Facile fabrication of controllable zinc oxide nanorod clusters on polyacrylonitrile nanofibers via repeatedly alternating immersion method
writer:Ying Zhou & Xia Li & Hou-Yong Yu & Guo-Liang Hu & Ju-Ming Yao
keywords:Compositenanofibermembranes.Zinc oxidenanorodclusters.Alternatingimmersionmethod. Thermalstability.Photocatalyticactivity
source:期刊
Issue time:2016年
Polyacrylonitrile/zinc oxide (PAN/ZnO) composite nanofiber membranes with different ZnO morphologies were fabricated by repeatedly alternating hot–cold immersion and single alternating hot–cold immersion methods. The influence of the PAN/ZnCl2 ratio and different immersion methods on the morphology, microstructure, and properties of the nanofiber membranes was investigated by using field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), and ultraviolet–visible (UV–Vis) spectroscopy. A possible mechanism for different morphologies of PAN/ZnO nanofiber membranes with different PAN/ZnCl2 ratio through different immersion processes was presented, and well-dispersed ZnO nanorod clusters with smallest average dimeter of 115 nm and hexagonal wurtzite structure were successfully anchored onto the PAN nanofiber surface for R-7/1 nanofiber membrane. Compared to S-5/1 prepared by single alternating hot–cold immersion method, the PAN/ZnO nanofiber membrane fabricated by repeatedly alternating hot–cold immersion method (especially for R-7/1) showed improved thermal stability and high photocatalytic activity for methylene blue (MB). Compared to S-5/1, decomposition temperature at 5% weight loss (T5%) was increased by 43 °C from 282 to 325 °C for R-7/1; meanwhile, R-7/1 showed higher photocatalytic degradation ratio of approximately 100% (after UV light irradiation for 8 h) than 65% for S-5/1 even after irradiation for 14 h. Moreover, the degradation efficiency of R-7/1 with good reuse stability remained above 94% after 3 cycles.