Links
Contact Info.
Current Location :> Home > Publications > Text
Fabrication of Oleophilic Polypeptide Nanoparticle from Complexing of Cross-Linked Epsilon-poly-l-lysine with Docusate Sodium for Preparation of Bactericidal Thermoplastic Polyurethanes
writer:Yuanjing Xu, Qi Chen, Lin Xia*, Shuaishuai Yuan*, and Zhibo Li*
keywords:epsilon-poly-l-lysine surfactant nanoparticle antibacterial thermoplastic polyurethane (TPU)
source:期刊
specific source:ACS Biomaterials Science & Engineering
Issue time:2023年
Thermoplastic polyurethanes (TPUs) are extensively utilized in the biomedical field due to their exceptional mechanical properties and biocompatibility. However, the lack of antibacterial activity limits their application ranges. Nanoscopic particle-based additives with inherent antibacterial characteristics are regarded as promising strategies to prevent biomaterials-associated infection. Herein, a novel polymeric nanoparticle is prepared, which integrates chemically cross-linked epsilon-poly-l-lysine (CPL) and anionic surfactant-docusate sodium (DS). The cross-linked epsilon-poly-l-lysine/docusate sodium (CPL/DS) nanoparticle can be well dispersed in organic solvent and a polymer matrix, which is beneficial to endowing TPUs with synergistic miscibility and antibacterial properties. An antibacterial test showed that the CPL/DS nanoparticles have strong antibacterial activity against S. aureus. Moreover, the results of antibacterial experiments in vitro revealed that almost 100% of S. aureus could be killed by CPL/DS nanoparticle-embedded TPU film with a content of 0.5 wt %. In addition, all of the CPL/DS modified TPU films showed good cytocompatibility in vitro. Consequently, this kind of CPL/DS nanoplatform has great potential to serve as a safe and high-efficient bactericidal agent for endowing biomedical devices with bactericidal property.