相关链接
联系方式
  • 通信地址:吉林省长春市朝阳区柳条路2号
  • 邮编:130022
  • 电话:0431-85262512
  • 传真:
  • Email:youliangzhu@jlu.edu.cn
当前位置:> 首页 > 论文著作 > 正文
Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems
作者:Y.-L. Zhu, Z.-Y. Lu, G. Milano, A.-C. Shi, Z.-Y. Sun
关键字:Polyelectrolyte systems
论文来源:期刊
具体来源:Physical Chemistry Chemical Physics, 18, 14 (2016)
发表时间:2016年
To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes.