相关链接
联系方式
  • 通信地址:陕西省西安市长安南路199号 陕西师范大学 化学化工学院 079信箱
  • 邮编:710062
  • 电话:029-81530828
  • 传真:
  • Email:yangpeng@snnu.edu.cn
当前位置:> 首页 > 论文著作 > 正文
[Adv. Mater.] Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging Interfacial Anchor with Antifouling
作者:Xinyi Hu, Juanhua Tian, Chen Li, Hao Su, Rongrong Qin, Xin Cao, Yifan Wang, Peng Yang*
关键字:Amyloid-like assembly, bovine serum albumin, antifouling, interfacial bonding, surface modification
论文来源:期刊
具体来源:Advanced Materials
发表时间:2020年

Surfaces that resist nonspecific protein adsorption in a complex biological milieu are required for a variety of applications. However, few strategies can achieve a robust antifouling coating on a surface in an easy and reliable way, regardless of material type, morphology, and shape. Herein, the preparation of an antifouling coating by one-step aqueous supramolecular assembly of bovine serum albumin (BSA) is reported. Based on fast amyloid-like protein aggregation through the rapid reduction of the intramolecular disulfide bonds of BSA by tris(2-carboxyethyl)phosphine (TCEP), a dense proteinaceous nanofilm with controllable thickness (~130 nm) could be covered on virtually arbitrary material surfaces in tens of minutes by a simple dipping or spraying process. The nanofilm shows strong stability and adhesion with the underlying substrate, exhibiting excellent resistance to the nonspecific adsorption of broad-spectrum of contaminants including proteins, serum, cell lysate, cells and microbes, etc. In vitro and in vivo experiments show that the nanofilm can prevent the adhesion of microorganisms and the formation of biofilm. Compared with native BSA, the proteinaceous nanofilm coating exposes a variety of functional groups on the surface, which have more-stable adhesion with the surface and can maintain the antifouling property in harsh conditions including ultrasonic, surfactants, organic solvents, and enzymatic digestion. This work highlights an interesting design in which the amyloid-like protein aggregate can simultaneously possess strong interfacial bonding and antifouling, which few previous antifouling materials can achieve.


Xinyi Hu, Juanhua Tian, Chen Li, Hao Su, Rongrong Qin, Xin Cao, Yifan Wang, Peng Yang*, Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging Interfacial Anchor with Antifouling, Adv. Mater. 2020, Just Accepted, DOI: adma.202000128.