具有调控细胞黏附与生长的细菌纤维素复合材料的微纳米构筑(Micro-nano-fabrication of bacterial cellulose composites capable of regulating the adherence and growth of Cultured Cells)
项目类别:国家自然科学基金
项目编号:21074041
参与人员:杨光
起止日期:2011年1月-2013年12月
本项目采用已建立的生物制造过程控制的方法,在生物合成过程中经分子模板、微流控和磁调控葡糖醋杆菌的定向运动,控制纤维素纤维的组装与排列;通过生物活性分子(壳聚糖、胶原、丝素蛋白等)或导电材料(碳纳米管、聚苯胺等)的复合改性,同时对纤维素纤维的表面官能团羟基进行修饰与活化,导入多重氢键和静电力等非共价键,设计和调控材料与细胞间的相互作用力。通过体系中分子结构、纳米结构和微米结构的多尺度效应,研究在组装过程中的纳米尺度效应和界面效应,阐明多组分精细结构的跨尺度形成机制。通过对成纤维细胞、神经元细胞、内皮细胞的黏附、生长、迁移等行为的生物学评价,揭示构筑条件对材料结构与性能的影响;阐明影响生物材料与细胞间相互作用的化学结构与物理因素,并构筑出可调控细胞黏附、生长的新型生物高分子复合材料,为运用于合理设计具有良好生物相容性的细胞培养器和人工器官提供重要科学依据。
This project adopts the established methods of bio-manufacturing and process control, including molecular templating, micro-fluidic technology and magnetically controlled orientation movement of Gluconacetobacter xylinus, to regulate the assembling and arrangement of cellulose fibers in biosynthetic process. The modification of cellulose fibers with bioactive molecules ( chitosan, collagen, silk fibroin, etc.) and/or conducting materials (carbon nanotubes, polyaniline, etc.), as well as the activation of surface hydroxyl groups should be performed to introduce non-covalent bonds like multiple hydrogen bonding and electrostatic attraction, for the design and regulating of interactions between materials and cells. Afterwards, both the nano-scale and interface effects in the assembling process should be investigated, and the scale-span formation mechanism of multi-component and fine structures can be clarified according to the multi-scale effects of molecular structure, micron and nano structures in the cellulose fiber composite system. Finally, by the biological assessment of the adhesion, growth and migration behaviors of fibroblasts, endothelial cells and nerve cells, etc. we attempt to disclose the influence of construction conditions on the material structure and performances, and to clarify the chemical and physical factors affecting the interactions between biomaterial and cells. These studies will help to build up novel biopolymer composites which can regulate the adherence and growth of cells, and to provide an important scientific basis for rational design of cell culture devices and artificial organs with good biocompatibility.
Key words: Bacterial cellulose; fibroblast; endothelial cell; nerve cells; cell adhesion