012. Melt-phase behavior of collapsed PMMA/PVC chains revealed by multiscale simulations
writer:Chaofu Wu
keywords:Collapsed chains, Multiscale simulations, Coarse-grained, Phase behavior
source:期刊
specific source:Journal of Molecular Modeling 2016; 22(4):99
Issue time:2016年
Single- and double-chain models of three stereoregular polymers, iso- and syndiotactic poly(methyl methacrylate) and isotactic poly(vinyl chloride), were extensively simulated using systematic coarse-grained (CG) potentials. It was found that, in vacuum, all of these long chains collapse in a two-stage process from their fully extended configurations into coils, and the two chains in each double-chain model ultimately become intertwined. Strong intermolecular interactions were found to occur between two chains of the same polymer (“like pairs”), which helps to explain the high densities of single-component melts. However, the intermolecular interactions between two chains of different polymers (“unlike pairs”) were stronger than those in like pairs. The enthalpy of mixing for unlike pairs—obtained from their intermolecular interaction energies—was negative, indicating that the two binary blends considered here are homogeneous systems. Moreover, a more negative enthalpy of mixing is suggested to correlate with better miscibility. These results agree well with corresponding experimental and simulated results, once again validating the accuracy of CG potentials when they are used to explore structural and energetic properties. The local structure captured by the isolated long chains dictates the ability to elucidate melt-phase behavior. A scheme involving the preparation of bulk models with initially collapsed chains was proposed; such CG models could be widely used to rapidly screen pairs of polymers for specific applications.
http://link.springer.com/article/10.1007%2Fs00894-016-2963-7