Highly flexible frontside-illuminated dye-sensitized solar cells using three-dimensional network TiO2 nanowires.
writer:王海
keywords:DYE-SENSITIZED, SOLAR CELL
source:期刊
Issue time:2011年
Here we report a highly flexible frontside-illuminated dye-sensitized solar cell (FIDSSC) using Ti foils as the substrates. The laser-drilled microhole arrays (LDMAs) on Ti foil substrates as the photoanode provided an efficient pathway for the diffusion of liquid electrolyte, which would be particularly favorable for frontside illumination of FIDSSC designs. The three-dimensional (3D) network TiO2 nanowires (NWs) were directly grown on the Ti substrate with LDMAs via a simple hydrothermal method. Platinized Ti sheet was used as the counter electrode in the FIDSSC. The mechanical properties of the novel structured device were measured. It was shown that as-synthesized large-scale 3D network TiO2 NWs with a diameter of about 20-30 nm and a length of about 6 microm can prevent crack from generating efficiently when bended to an extreme angle of 120 degree. Furthermore, we demonstrated that the effects of the different bending angles on the performance of the 3D network TiO2 NWs-based FIDSSCs were slight, indicating NWs preferable advantages for the fabrication of flexible DSSCs. The results showed that the FIDSSC achieved an efficiency of 0.72% under front illumination of AM 1.5 simulated one sun light (100 mWcm(-2)).