Links
Contact Info.
  • Address:广西南宁市大学路100号广西大学轻工与食品工程学院308
  • Zip:530004
  • Tel:0771-3237305
  • Fax:
  • Email:qs_duan@gxu.edu.cn
Current Location :> Home > Publications > Text
Fire-retardant hydroxyapatite/cellulosic triboelectric materials for energy harvesting and sensing at extreme conditions
writer:Qingshan Duan, Zhijun Zhang, Jiamin Zhao, Juanxia He, Weiqing Peng, Ye Zhang, Tao Liu, Shuangfei Wan
keywords:Triboelectric nanogenerator, Triboelectric material, Fire-resistant, Energy harvesting, Cellulose
source:期刊
specific source:Nano Energy
Issue time:2023年
Fire accidents pose a significant threat to public safety, property, and the environment. Traditional power-dependent rescue and sensing devices are susceptible to failure or even explosion in high-temperature and open-fire environments. This research has developed fire-retardant cellulosic triboelectric materials, offering a potential solution. Due to the protection of hydroxyapatite, the cellulose nanofiber (CNF)/hydroxyapatite composite film did not undergo obvious deformation or carbonization after burning for 60 s under a 500 °C alcohol lamp flame. The closely packed cross-sectional structure facilitated air filling, endowing it with certain heat insulation performance. The high surface roughness and special microstructure greatly enhanced the triboelectric performance, achieving an open circuit voltage of 102 V and a short circuit current of 6.18 μA under a working area of only 4 cm2, surpassing most cellulose-based triboelectric materials. The results in self-powered sensing of high-temperature and open flames indicate that fire-retardant cellulosic triboelectric materials have the potential for use in high-temperature environments. This study introduces a new idea for energy harvesting and sensing at extreme conditions, which has important significance for the development of wearable self-powered sensors and the smooth progress of fire rescue operations.