相关链接
联系方式
  • 通信地址:浙江省温州市龙湾区金联路1号
  • 邮编:454000
  • 电话:0391-3986910
  • 传真:
  • Email:qiangcheneric@163.com
当前位置:> 首页 > 论文著作 > 正文
2016-Chem Mater: Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions
作者:Qiang Chen*, Xiaoqiang Yan, Lin Zhu, Hong Chen, Bing Jiang, and Jie Zheng*, et al
关键字:double network hydrogels
论文来源:期刊
具体来源:Chemistry of Materials
发表时间:2016年

Double network hydrogels (DN gels) are considered as one of the toughest soft materials. However, conventional chemically linked DN gels often lack high self-recovery and fatigue resistance properties due to permanent damage of covalent bonds upon deformation. Current strategies to improve self-recovery and fatigue resistance properties of tough DN gels mainly focus on the manipulation of the first network structure. In this work, we proposed a new design strategy to synthesize a new type of Agar/PAMAAc-Fe3+ DN gels, consisting of an agar gel as the first physical network and a PAMAAc-Fe3+ gel as the second chemical–physical network. By introducing Fe3+ ions into the second network to form strong coordination interactions, at optimal conditions, Agar/PAMAAc-Fe3+ DN gels can achieve extremely high mechanical properties (σf of ~8 MPa, E of ~8.8 MPa, and W of ~16.7 MJ/m3), fast self-recovery (~50% toughness recovery after 1 min of resting), and good fatigue resistance compared to properties of cyclic loadings by simply controlling acrylic acid (AAc) content in the second network. The high toughness and fast recovery of Agar/PAMAAc-Fe3+ DN gel is mainly attributed to energy dissipation through reversible noncovalent bonds in both networks (i.e., hydrogen bonds in the agar network and Fe3+ coordination interactions in the PAMAAc network). The time-dependent recovery of Agar/PAMAAc-Fe3+ gels at room temperature and the absence of recovery in Agar/PAMAAc gels also confirm the important role of Fe3+ coordination interactions in mechanical strength, self-recovery, and fatigue resistance of DN gels. Different mechanistic models were proposed to elucidate the mechanical behaviors of different agar-based DN gels. Our results offer a new design strategy to improve strength, self-recovery, and fatigue resistance of DN gels by controlling the structures and interactions in the second network. We hope that this work will provide an alterative view for the design of tough hydrogels with desirable properties.

Paper link: http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b01920