当前位置:群英聚首 > 论文著作 > 正文
Impact of phenolic-formaldehyde resin microplastics on anaerobic granular sludge: EPS interaction mechanisms and impacts on reactor performance
来源:王志伟副教授个人网站 发布日期:2024-10-30
作者:Keyang Jiang, Qian Gao, Jinhu Feng, Sijia Zhu, Wenxia Zhai, Di Wu, Huiya Zhang, Wei Zhang, Xi Liu, J
关键字:Phenolic-formaldehyde resinAnaerobic granular sludgeMicroplasticsExtracellular polymeric substancesMolecular dynamics simulation
论文来源:期刊
具体来源:https://www.sciencedirect.com/science/article/pii/S0304389424028875
发表时间:2024年
This paper investigates the effects of phenolic-formaldehyde resin microplastics (PF-MPs) with different particle sizes on anaerobic granular sludge (AnGS) and reveals the complex interaction mechanisms between extracellular polymeric substances (EPS) and PF-MPs through the combination of molecular dynamics simulations and spectroscopy. PF-MPs provide a new ecological niche for microorganisms. Microorganisms and EPS can adhere and accumulate on the surface of PF-MPs, producing highly active floc sludge inside the reactor, thereby increasing the chemical oxygen demand (COD) removal rate and methane production of the reactor. However, the high metabolic activity of floc sludge consumes the biodegradable components in EPS, resulting in loose rupture of the sludge particles and reduced particle size. In addition, small particle size S-PF can adhere to the sludge surface,which caused mass transfer barriers and reduced the expression of genes and enzyme activities for the sludge acidification process and the main methanogenic processes. Insufficient internal nutrients lead to endogenous metabolism within the granules, causing internal hollowing, which affects the density and settling performance of the sludge. Monolayer physical adsorption plays a major role in the adsorption of EPS on PF-MPs. 2D-COS and FTIR spectroscopy were used to elucidate the preferential binding of polysaccharides to PF-MPs. This paper explores the fate of PF-MPs in anaerobic systems and demonstrates the important role of EPS in the capture of microplastics by granular sludge, providing a theoretical basis for understanding the migration of microplastics in wastewater treatment.
Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号