相关链接
联系方式
  • 通信地址:重庆北碚天生路2号西南大学化学化工学院
  • 邮编:400715
  • 电话:023-68254000
  • 传真:
  • Email:mwang@swu.edu.cn
当前位置:> 首页 > 最新动态 > 正文
Composites Science and Technology:压阻各向异性导电硅橡胶/多壁碳纳米管/镍颗粒复合材料
论文摘要:

Conventional piezoresistive sensors of flexible conductive polymer composites (FCPC) are mostly isotropic because of the weak controllable fabrication strategies. In this study, a facile strategy was introduced to fabricate the polydimethylsiloxane (PDMS)/multi-walled carbon nanotubes (CNT)/aligned nickel particles (Ni) composites under a low magnetic field. The PDMS pre-polymer firstly mixed with CNT and Ni particles with ultrasonic and solvent assistant, and then cured under a magnetic field with a magnetic flux density of 75 mT to form the composites. Because of the alignment of Ni particles, the PDMS/CNT/align-Ni composites exhibited obviously electrical, mechanical and piezoresistive anisotropy. Specifically, the compression modulus of the composites with 0.23 vol% CNTs and 3.93 vol% Ni particles was ~4.93 and ~3.66 MPa at the direction parallel to (X direction) and vertical to the alignment direction of Ni particles (Y direction), respectively. The anisotropic index of the electrical conductivity could reach 2.6 × 105 in the PDMS/CNT/aligned-Ni composites containing 0.23 vol% CNT and 3.37 vol% Ni particles. Furthermore, the PDMS/CNT/aligned-Ni composites showed a negative piezoresistive effect at X direction and a positive piezoresistive effect at Y direction.

全文链接:https://doi.org/10.1016/j.compscitech.2022.109520