相关链接
联系方式
  • 通信地址:山东省青岛经济技术开发区长江西路66 号
  • 邮编:266580
  • 电话:0532-86983415
  • 传真:
  • Email:luxq@upc.edu.cn
当前位置:> 首页 > 论文著作 > 正文
Mechanistic insight into the gas-phase reactions of methylamine with ground state Co+(3F) and Ni+(2D).
作者:X. Q. Lu, S. X. Wei, W. Y. Guo, C.-M. L. Wu.
关键字:Mechanistic insight,gas-phase reactions
论文来源:期刊
具体来源:J. Phys. Chem. A
发表时间:2010年
The gas-phase reaction mechanisms of methylamine (MA) with the ground-state Co(+)((3)F) and Ni(+)((2)D) are theoretically investigated using density functional theory at both the B3LYP/6-311++G(d,p) and B3LYP/6-311++G(3df,2p) levels. The reactions for hydride abstraction and dehydrogenation are analyzed in terms of the topology of potential energy surfaces (PESs). Co(+) and Ni(+) perform similar roles along the isomerization processes to the final products. Hydride abstraction takes place via the key species of metal cation-methyl-H intermediate, followed by a charge transfer process before the direct dissociation of CH(2)NH(2)(+)···MH (M = Co, Ni). The enthalpies of reaction, stability of metal cation-methyl-H species, and competition between different channels account for the sequence of the hydride abstraction products: CoH < NiH < CuH. The most competitive dehydrogenation route occurs through a stepwise reaction, consisting of initial C-H activation, amino-H shift, and direct dissociation of the precursor CH(2)NHM(+)···H(2). This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanisms of amine prototype with late first-row transition metal cations.