相关链接
联系方式
  • 通信地址:长春市人民大街5625号
  • 邮编:130022
  • 电话:0431-85262159
  • 传真:
  • Email:sfluan@ciac.ac.cn
当前位置:> 首页 > 论文著作 > 正文
【ACS Applied Materials & Interfaces】Construction of hierarchical polymer brushes on upconversion nanoparticles via nir-light-initiated raft polymerization
作者:Zhongxi Xie, Shanshan Huang, Pingan Ma, Zhiyao Hou, Ziyong Cheng*, Jun Lin*, Shifang Luan*, et al.,
关键字:Hierarchical Polymer Brushes, Upconversion Nanoparticles
论文来源:期刊
具体来源:ACS Applied Materials & Interfaces, 2017, 36, 30414-30425
发表时间:2017年

Abstract:

Photoinduced reversible addition–fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core–shell UCNPs (NaYF4:Yb/Tm@NaYbF4:Gd@NaNdF4:Yb@NaYF4), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine–glycine–aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.