相关链接
联系方式
  • 通信地址:福建省福州市闽侯县上街镇福建农林大学旗山校区
  • 邮编:350108
  • 电话:18502093393
  • 传真:
  • Email:liaogf@fafu.edu.cn
当前位置:> 首页 > 论文著作 > 正文
11-Green Preparation of Straw Fiber Reinforced Hydrolyzed Soy Protein Isolate/Urea/Formaldehyde Composites for Biocomposite Flower Pots Application
作者:Enhui Sun,1 Guangfu Liao,1 Qian Zhang, Ping Qu, Guofeng Wu, Yueding Xu, Cheng Yong, and Hongying*
关键字:biodegradable polymers; mechanical property; thermal property; degradation property; biocomposite flower pots application
论文来源:期刊
具体来源:https://doi.org/10.3390/ma11091695
发表时间:2018年
The effects of soil burial on the biodegradation of biocomposite flower pots (BFP) made from straw fiber (SF) and hydrolyzed soy protein isolate/urea/formaldehyde (HSPI/U/F) copolymer resin were studied in detail. The microstructure, crystallinity, functional groups, mechanical, degradation and thermal property of the prepared SF with HSPI/U/F copolymer resin have been studied, and the degradation mechanism was also elucidated. XRD results showed that the bond breakage between SF and HSPI/U/F copolymer resin induced a decrease in relative degradation-resistant crystal structures. FTIR spectra showed that the methylolated HSPI units could form a cross-linking network with U/F and SF. The BFP degradation after soil burial was mainly attributed to the effects of microorganisms. The degradation products were environmentally friendly, because they were degradable and could fertilize the soil. In addition, the U/F adhesives were slightly degraded by the microorganisms due to the HSPI in the pots. The TG and DSC results showed that the molecular motion of the BFP matrix could be restricted by the degradation action and the content of HSPI, resulting in decreased crystallization enthalpy and showing good thermal property. The tensile strength of different reinforced samples was not significantly reduced in comparison to U/F resin, and still kept good mechanical performance. Thus, the prepared SF reinforced HSPI/U/F copolymer resins could have good potential for use in the field of biodegradable flower pots because of their good thermal property, mechanical property, biodegradability, and relatively low cost.