45-Interior and Surface Synergistic Modifications Modulate the SnNb2O6/Ni-Doped ZnIn2S4 S-Scheme Heterojunction for Efficient Photocatalytic H2 Evolution
writer:Chunxue Li, Xiaoteng Liu, Guixiang Ding, Pengwei Huo, Yan Yan, Yongsheng Yan, * Guangfu Liao,*
keywords:Diffraction,Doping,Heterojunctions,Photocatalysts,Two dimensional materials
source:期刊
specific source:https://doi.org/10.1021/acs.inorgchem.1c03936
Issue time:2022年
Interior and surface synergistic modifications can endow the photocatalytic reaction with tuned photogenerated carrier flow at the atomic level. Herein, a new class of 2D/2D SnNb2O6/Ni-doped ZnIn2S4 (SNO/Ni-ZIS) S-scheme heterojunctions is synthesized by a simple hydrothermal strategy, which was used to evaluate the synergy between interior and surface modifications. Theoretical calculations show that the S-scheme heterojunction boosts the desorption of H atoms for rapid H2 evolution. As a result, 25% SNO/Ni0.4-ZIS exhibits significantly improved PHE activity under visible light, roughly 4.49 and 2.00 times stronger than that of single ZIS and Ni0.4-ZIS, respectively. In addition, 25% SNO/Ni0.4-ZIS also shows superior structural stability. This work provides advanced insight for developing high-performance S-scheme systems from photocatalyst design to mechanistic insight.