相关链接
联系方式
  • 通信地址:西北工业大学高分子研究所
  • 邮编:710072
  • 电话:029-884011625
  • 传真:029-884011625
  • Email:kongjie@nwpu.edu.cn
当前位置:> 首页 > 最新动态 > 正文
课题组王佩同学论文在ACS Appl. Mater. Interfaces上发表

Pei Wang, Yusheng Tang*, Zhen Yu, Junwei Gu, and Jie Kong*, Advanced Aromatic Polymers with Excellent Antiatomic Oxygen Performance Derived from Molecular Precursor Strategy and Copolymerization of Polyhedral Oligomeric Silsesquioxane, ACS Appl. Mater. Interfaces, 2015, 7 (36): 20144-20155

论文链接:http://pubs.acs.org/doi/abs/10.1021/acsami.5b05490

Abstract:

In this contribution, the advanced aromatic polymers with excellent antiatomic oxygen (AO) performance were designed and synthesized using molecular precursor strategy and copolymerization of polyhedral oligomeric silsesquioxane (POSS). A soluble poly(p-phenylene benzobisoxazole) (PBO) precursor, that is, TBS–PBO (tert-butyldimethylsilyl was denoted as TBS), was designed to overcome the poor solubility of PBO in organic solvents. Then the new copolymer of TBS–PBO–POSS was synthesized by the copolymerization of TBS–PBO and POSS, which possessed good solubility and film-forming ability in common organic solvents, such as N-methylpyrrolidone, N,N-dimethylacetamide, and dimethyl sulfoxide. More importantly, the TBS–PBO–POSS films exhibited outstanding antiatomic oxygen properties because of the incorporation of POSS monomers with cagelike structure into the main chain of copolymer, which drastically reduced the AO-induced erosion owing to the formation of the passivating silica layer on the surface of polymers. When the TBS–PBO–POSS films were exposed to AO effective fluences of 1.5495 × 1020 atom cm–2 (5 h) and 4.6486 × 1020 atom cm–2 (15 h), the relative mass loss was merely 0.19% and 0.41%, respectively. This work provides a new perspective and efficient strategy for the molecular design of aromatic heterocyclic polymers possessing excellent combination properties including processing convenience and antioxidative and mechanical properties, which can be employed as potential candidates to endure the aggressive environment encountered in low earth orbits.