Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture.
writer:Zhenfeng He, Wei. Jiang,* Christoph. A. Schalley,*
keywords:integrative self-sorting,dynamic combinatorial library,
source:期刊
specific source:Chem. Soc. Rev., 2015, 44, 779-789
Issue time:2015年
Large protein-sized synthetic supramolecular architecture is rare and certainly has not yet achieved the
structural and functional complexity of biomolecules. As multiple, identical copies of a few building
blocks are repetitively used, a highly symmetrical architecture results with limitations in function. In
marked contrast, functional structures in nature are often assembled with high geometric precision from
many different building blocks. They cooperate in a complex way realizing energy conversion, mechanical
motion or transport phenomena. Beyond self-assembly, the structurally and functionally complex biomolecular
machines rely on self-sorting to correctly position all subunits through orthogonal recognition sites. Mimicking
such self-sorting processes is a promising strategy for supramolecular synthesis – resulting in higher structural
complexity and promising access to a more sophisticated function. The term ‘‘integrative self-sorting’’
was coined to describe the strategy to form well-defined assemblies with well-controlled subunit
positions. The key process is the incorporation of two or more orthogonal binding motifs into at least
some of the subunits. Modularity and programmability based on orthogonal yet similar binding motifs
generate diversity and complexity. Integrative self-sorting is thus inherently related to systems chemistry.
Depending on the individual binding motifs, (multi-)stimuli responsiveness can be achieved. When
different recognition events en route to the final assembly occur on significantly different time scales,
kinetic pathway selection is observed. In this account, we review the modularity, programmability, and
emergent properties of integrative self-sorting, emphasizing its utility and perspective for complex
supramolecular architectures.