相关链接
联系方式
  • 通信地址:陕西省西安市友谊西路127号
  • 邮编:710072
  • 电话:029-88431638
  • 传真:
  • Email:nwpugjw@163.com
当前位置:> 首页 > 精彩瞬间 > 正文
SFPC课题组电磁屏蔽高分子复合材料研究成果发表在ACS Appl Mater Inter上

Chaobo Liang, Kunpeng Ruan, Yali Zhang and Junwei Gu*. Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances. ACS Applied Materials & Interfaces, 2020, 12(15): 18023-18031. 2018IF=8.456. (1区材料科学Top期刊)

https://doi.org/10.1021/acsami.0c04482 

Abstract: Flexible electromagnetic interference (EMI) shielding materials with excellent thermal conductivities and Joule heating performances are of urgent demand in the communication industry, artificial intelligence, and wearable electronics. In this work, highly conductive silver nanowires (AgNWs) were prepared using the polyol method. Cellulose sheets were then prepared by dissolving natural cotton in a green and efficient NaOH/urea aqueous solution. Finally, multifunctional flexible EMI shielding AgNWs/cellulose films were fabricated based on vacuum-assisted filtration and hot-pressing. AgNWs are evenly embedded in the inner cellulose matrix and overlap with each other to form a 3D network. AgNWs/cellulose films, with a thickness of 44.5 μm, obtain the superior EMI shielding effectiveness of 101 dB, which is the highest value ever reported for shielding materials with the same thickness. In addition, AgNWs/cellulose films present excellent tensile strength (60.7 MPa) and tensile modulus (3.35 GPa), ultrahigh electrical conductivity (σ, 5571 S/cm), and excellent in-plane thermal conductivity coefficient (λ∥, 10.55 W/mK), which can effectively dissipate the heat accumulation. Interestingly, AgNWs/cellulose films also show outstanding Joule heating performances, good stability, and sensitive temperature response at driving voltages, absolutely safe for the human body. Therefore, our fabricated multifunctional flexible AgNWs/cellulose films have broad prospects in the fields of EMI shielding and protection of outdoor large-scale power transformers and wearable electronics.

通讯工业、人工智能和可穿戴电子产品领域亟需具有优异导热性能和焦耳热性能的柔性电磁干扰(EMI)屏蔽材料。本文采用多元醇法制备高导电银纳米线(AgNWs),通过天然棉花溶解于绿色且高效的NaOH/尿素水溶液体系制备纤维素(cellulose)片,再经真空辅助抽滤与热压相结合的方法制备多功能AgNWs/纤维素屏蔽膜。研究结果表明,AgNWs均匀地嵌在纤维素基体中,且相互搭接成三维网络结构。44.5 μm厚度的AgNWs/纤维素屏蔽膜具有101 dB的EMI SE,这是迄今报道过相同厚度下材料中的最高值。此外,AgNWs/纤维素屏蔽膜拥有卓越的拉伸强度(60.7 MPa)和拉伸模量(3.35 GPa),超高的导电率(s,5571 S/cm)和面内导热系数(λ∥,10.55 W/mK),可以有效耗散聚酰亚胺电热膜和陶瓷发热片工作过程中产生的热积聚。更有趣的是,AgNWs/纤维素屏蔽膜还显示出了出色的焦耳热性能,在对人体绝对安全的工作电压下具有良好的稳定性和灵敏的热响应性。因此,这种多功能柔性AgNWs/纤维素薄膜在户外大型变电设备和人体可穿戴设备的EMI屏蔽防护领域的应用具有广阔的前景。


附第一作者(梁超博)个人简介


梁超博,男,辽宁开原人,2017级博士研究生。2015年在西北工业大学获学士学位,同年加入顾军渭教授课题组攻读硕士学位,并于2017年提前攻读博士学位。主要从事电磁屏蔽复合材料微结构设计、性能调控及机理研究。2016年、2018年和2019年研究生国家奖学金获得者。2018年陕西省第四届研究生创新成果展评奖理科三等奖。2019年全国高分子学术论文报告会最佳墙报奖。主持西北工业大学研究生校企协同创新基金1项。在Sci Bull,Compos Sci Technol和Nanoscale等国际知名期刊以第一作者身份(含导师第一和共同第一)发表SCI论文11篇,SCI引用1700余次(入选第一作者身份ESI热点论文4篇、高被引论文5篇),H因子17;发表在J Mater Chem C (2019, 7: 2725) 的论文被评为2019年期刊最受欢迎40篇文章之一;参加国际会议4次并作口头报告;授权、公开国家发明专利7件。