Links
Contact Info.
  • Address:长春市延安大街2055号 长春工业大学 科研楼704房间
  • Zip:130012
  • Tel:+86-431-85717352
  • Fax:+86-431-85716465
  • Email:ghgao@ccut.edu.cn
Current Location :> Home > Publications > Text
56. [European Polymer Journal] The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels
writer:Jianyu Xu, Xiuyan Ren,?Guanghui Gao*
keywords:hybrid hydrogels
source:期刊
specific source:European Polymer Journal
Issue time:2018年

Hybrid crosslinking hydrogels have exhibited excellent mechanical properties, however, the relationship between chemical and physical crosslinking in the various deformation stages is still indistinct. Here, we have explored a novel hybrid hydrogel by inducing low density of chemical crosslinking into latex particle hydrogels (LP-Gel), in which latex particles act as physical crosslinking centers for inducing efficient aggregation of hydrophobic chains. The resulting hydrogel exhibited extraordinary mechanical performance with fracture stress of 1340 kPa, fracture strain of 2023% and fracture energy of 7.8 MJ/m3. It is found that the role of chemical and physical crosslinking was different from initial deformation stage to fracture. Initially physical crosslinking mainly supports stress. Subsequently, more physical crosslinking centers were damaged and simultaneously chemical crosslinking caused disruption of molecular chains. The synergistic effects of chemical and physical crosslinking allow hydrogels dissipate a large number of energy, significantly enhancing the mechanical strength of hydrogels.