Links
Contact Info.
  • Address:长春市延安大街2055号 长春工业大学 科研楼704房间
  • Zip:130012
  • Tel:+86-431-85717352
  • Fax:+86-431-85716465
  • Email:ghgao@ccut.edu.cn
Current Location :> Home > Publications > Text
52. [RSC Advances] The effect of hydrophobic alkyl chain length on the mechanical properties of latex particle hydrogels
writer:Yang Gao, Lijie Duan, Shuang Guan, Guanghui Gao, Ya Cheng, Xiuyan Ren* and Yuanrui Wang*
keywords:latex particle hydrogels
source:期刊
specific source:RSC Advances
Issue time:2017年


Herein, different long alkyl chains (C1, C6, C12, and C16) were introduced as hydrophobic segments to enhance the performance of hydrogels reinforced by latex particles (LP-Gel). Poly(butyl acrylate) (PBA) latex particles (LPs) were employed as hydrophobic association cross-linking centers. First, the PBA latex particles were prepared via emulsion polymerization, and then, LP-Gel with high mechanical strength was prepared via one-pot free radical polymerization using acrylamide as a monomer, LP as a cross- linking center, and methacrylate as a hydrophobic molecule. It was found that the length of the hydrophobic alkyl chains from methacrylate has a significant effect on the mechanical performance and swelling degree of the hydrogels. The short alkyl chains exhibited weak hydrophobic interactions, and the resulting LP-Gel had a low mechanical strength. However, the long alkyl chains can effectively entangle with LPs through strong hydrophobic interactions, which significantly enhance the mechanical strength of the hydrogels. As a result, the LP-Gel exhibits a maximum fracture stress of 1.2 MPa and elongation of 2336%. This study will have a profound impact on the understanding of hydrogels toughened by hydrophobic alkyl chains of different lengths.