48. [Soft Matter] Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced by core-shell inorganic-organic hybrid latex particles
writer:Shan Xia, Shixin Song, Xiuyan Ren, Guanghui Gao*
keywords:hybrid latex particles; core-shell; tough hydrogels; self-recovery; anti-fatigue property
source:期刊
specific source:Soft Matter
Issue time:2017年
The introduction of SiO2 particles as crosslinking points into hydrogels has been recognized as a suitable way for toughening hydrogels, due to their versatile functionalization and large specific surface area. However, chemical linked SiO2 nanocomposite hydrogels often exhibited negligible fatigue resistance and poor self-recoverable property due to the irreversible cleavage of covalent bonds. Here, we proposed a novel strategy to improve stretchability, fatigue resistance and self-recoverable property of hydrogels by using SiO2-g-poly(butyl acrylate) core-shell inorganic-organic hybrid latex particles as dynamic crosslinking centers for hydrophobic association. The hybrid latex particles could distribute surrounding applied stress by disentanglement and recombination of hydrophobic segments. Based on this strategy, the formulated hydrogels showed excellent tensile strength of 1.48 MPa, superior stretchability of 2511% and remarkable toughness of 12.62 MJ/m3. Moreover, the hydrogels owned extraordinary anti-fatigue, rapid self-recovery and puncture resistance properties. Therefore, the strategy provided a novel pathway for developing advanced soft materials with potential applications in biomedical engineering, such as tendons, muscles and cartilages etc