38. Super-tough, ultra-stretchable and strongly compressive hydrogels with core–shell latex particles inducing efficient aggregation of hydrophobic chains
writer:Xiuyan Ren, Chang Huang, Lijie Duan, Baijun Liu, Lvjun Bu, Shuang Guan, and Guanghui Gao
keywords:hydrogels
source:期刊
specific source:Soft Matter
Issue time:2017年
Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core–shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core–shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core–shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core–shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.