相关链接
联系方式
  • 通信地址:苏州大学 材料与化学化工学部
  • 邮编:215123
  • 电话:0512-65884406
  • 传真:
  • Email:gjchen@foxmail.com
当前位置:> 首页 > 最新动态 > 正文
与陈红教授合作在Langmuir发表研究论文

Shi, X., Zhan, W., Chen, G., Yu, Q., Liu, Q., Du, H., … Chen, H. (2015). Regulation of Protein Binding Capability of Surfaces via Host–Guest Interactions: Effects of Localized and Average Ligand Density. Langmuir, 31(22), 6172–6178. http://doi.org/10.1021/acs.langmuir.5b01380


The protein binding capability of biomaterial surfaces can significantly affect subsequent biological responses, and appropriate ligand presentation is often required to guarantee the best functions. Herein, a new facile method for regulating this capability by varying the localized and average ligand density is presented. Binding between lysine and plasminogen relevant to a fibrinolysis system was chosen as a model. We integrated different lysine-modified β-cyclodextrin (β-CD) derivatives onto bioinert copolymer brushes via host–guest interactions. The localized and average lysine density can be conveniently modulated by changing the lysine valency on β-CD scaffolds and by diluting lysine-persubstituted β-CD with pure β-CD, respectively. Both the plasminogen adsorption and the plasminogen binding affinity were enhanced by lysine-persubstituted β-CD compared with those of lysine-monosubstituted β-CD, which is possibly due to the higher localized lysine density and the multivalent binding of plasminogen on lysine-persubstituted β-CD surfaces. With a change in the ratio of lysine-persubstituted β-CD to β-CD, the average lysine density can be tuned, leading to the linear regulation of the adsorption of plasminogen on surfaces.