相关链接
联系方式
  • 通信地址:长春市前进大街2699号吉林大学超分子楼
  • 邮编:130012
  • 电话:0431-85168491
  • 传真:
  • Email:
当前位置:> 首页 > 论文著作 > 正文
ProgPolySci--Biomimetic catalysts designed on macromolecular scaffolds
作者:Yin, Yanzhen; Dong, Zeyuan; Luo, Quan; et al.
关键字:Biomimetic catalysts, Macromolecular scaffolds, Molecular recognition, Enzyme mimics
论文来源:期刊
发表时间:2012年
Enzyme, an efficient and sophisticated biocatalyst, evolves into unique biomacromolecule with three-dimensional structure consisting of a linear sequence of amino acids and plays a crucial role in catalyzing biologically chemical reactions with high efficiency and selectivity in living system. For understanding the relationships between the enzyme structures and functions, the enzymatically catalytic mechanism, as well as for the potential applications, various biomimetic catalysts have been constructed to simulate the catalytic behavior of native enzymes. According to the wide studies in this area, the substrate recognition, specifically supramolecular interactions, and the cooperativity between the catalytic sites and substrate-binding sites have been regarded as pivotal factors for designing an efficient artificial enzyme. Up to now, large numbers of artificial enzymes have been constructed on various different scaffolds ranging from small molecular compounds, polymers, biomacromolecules to supramolecular assemblies and nanomaterials. Although most of the artificial enzymes showed moderate catalytic activities, encouragingly, some of them exhibited exciting high efficiency and selectivity. Compared to other scaffolds, macromolecules with their own advantages can endow enzyme models with enriched catalytic sites as well as the easy-achieved cooperation of the catalysis and recognition. This review will give an overview of the construction of artificial enzymes using macromolecules as scaffolds in the past decades, wherein various macromolecules containing copolymers, dendrimers, hyperbranched polymers, polymer microgels, supramolecules, imprinted polymers and biomacromolecules have been developed as scaffolds of artificial enzymes.