相关链接
联系方式
  • 通信地址:宁波市镇海区中官西路1219号
  • 邮编:315201
  • 电话:+86-574-86621498
  • 传真:
  • Email:tao.chen@nimte.ac.cn
当前位置:> 首页 > 论文著作 > 正文
[Acc. Chem. Res.] Mimicking Color-Changing Organisms to Enable the Multicolors and Multifunctions of Smart Fluorescent Polymeric Hydrogels
作者:Wei Lu, Muqing Si, Xiaoxia Le, and Tao Chen*
关键字:Multicolors, Multifunctions, Smart Materials, Fluorescent Hydrogels
论文来源:期刊
具体来源:Acc. Chem. Res., 2022, 55, 2291?2303
发表时间:2022年

Fluorescent polymer hydrogels (FPHs) are of significant interest for diverse emerging applications such as visualized sensing, smart display, camouflaging skins, soft actuators/robots, because they can synergize the features of classic fluorescent polymers and hydrogels. With great efforts in the past decades, the major challenge in this field has been believed to be not whether a given FPH of interest can be prepared but how to fabricate robust FPHs with multicolor tunability and multifunctional synergy. Such materials will conceptually minimize the contribution of passive materials to the mass and size of the final system, holding great potential to facilitate multiple applications. To this end, one promising way is to learn from the Nature that has superb capability to forge delicate or sometimes beyond imagination materials. Chameleons and cephalopods serve as typical examples, which are famous for not only diverse skin color adaptability under changing environmental demands, but also synergistic skin color and body gesture changes to communicate, warn, camouflage, etc. Biological studies revealed their structural color-changing capacity derives from different types of skin chromatophores and their rational multilayer arrangement in under-skin tissues. Besides, their superb ability to heterogeneously integrate soft tissues with disparate functions into topology-optimized architectures has led to various multifunctional performances. 

Such natural strategies, if replicated and implemented in artificial systems, would significantly benefit and advance the development of robust FPHs for various applications. In this Account, we summarizes the key advances of smart FPHs mainly achieved by our groups. We start by introducing the unique hierarchical multilayer structures of skin chromatophores in structural color-changing reptiles, followed by an in-depth discussion on how a rational integration of bioinspiration and man-made design makes it possible to largely expand the fluorescence color changing range of smart FPHs to almost cover the whole visible spectrum. Then, to closely mimic the multifunctional behaviors of chameleons and cephalopods, we further develop efficient strategies to introduce supramolecular interactions or heterogeneously integrating smart FPHs with other soft materials with disparate functions, producing a number of multifunctional fluorescent polymeric hydrogel systems. These robust FPHs can find many frontier applications, including bioinspired synergistic color/shape switchable hydrogel actuators/robots, smart systems with on-demand fluorescent patterning capacities for displaying or information encryption, as well as robust chemosensors for important food or environmental analytes. We expect that the discussion presented in this Account would promote better understanding of the discoloration systems in nature, and advance the development of bioinspired color-changing materials.