Links
Contact Info.
  • Address:天津市西青区宾水西道399号天津工业大学化学与化工学院化学工程与工艺系6D518
  • Zip:300387
  • Tel:022-83955663
  • Fax:022-83955663
  • Email:bianxihui@163.com
Current Location :> Home > Publications > Text
High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples
writer:Xihui Bian*, Shujuan Li, Ligang Lin, Xiaoyao Tan, QingjieFan, Ming Li
keywords:Empirical mode decomposition, Unfolded strategy, Partial least squares regression, Ensemble modeling, Complex sample analysis
source:期刊
specific source:Analytica Chimica Acta, 2016, 925, 16-22
Issue time:2016年
Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples.