中文题目:3D多孔g-C3N4/GO骨架稳定贵金属助催化剂增强日光诱导产氢活性
Title: Enhanced cocatalyst-support interaction and promoted
electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt)
composite catalysts for hydrogen evolution
作者:李伟* 褚晓姗 王菲 党妍妍 刘小云 王学川* 王传义*
关键字:Simulated
solar light; Hydrogen evolution reaction; Precious metal; Three-dimensional
porous structure; Electron acceptor
论文来源:期刊
具体来源:https://www.sciencedirect.com/science/article/abs/pii/S0926337321001600#!
发表时间:2021年
研究背景:
随着经济的快速发展及人类生活需求的不断增长,环境与能源问题日益凸显。解决环境污染和能源短缺问题已迫在眉睫。氢能源是一种绿色、可持续新能源,通过光催化技术有效产氢是目前能源材料领域研究的热点。
研究内容:
鉴于石墨烯及碳氮化合物(g-C3N4)表现出的诸多优越性能在光催化剂合成中具有重要应用。本研究通过模板辅助法构筑3D多孔g-C3N4/GO (p-CNG)复合骨架。基于3D p-CNG复合骨架适宜的孔径尺寸及结构中大量官能团的配位效应,可以将贵金属(Au、Pd、Pt)助催化剂稳定固定在3D p-CNG复合骨架结构中,构筑出3D p-CNG-M (Au、Pd、Pt)复合催化剂。作为电子受体的贵金属助催化剂显著增加了复合结构的催化活性位点,促进了电子-空穴分离,从而在模拟日光(SSL)诱导下表现出显著增强的催化产氢活性。研究表明,当pH = 10.5时,助催化剂-载体相互作用最强,是的优化后的3D p-CNG-Pt复合催化剂产氢活性更为突出(2565.81
μmol·g-1·h-1),其活性可以达到3 D p-CNG复合骨架(18.93
μmol·g-1·h-1)的136倍。在λ =
420 nm的诱导光下,其表观量子产率达到了21.6%。鉴于优化催化剂稳定的架构优势,其在长时间的光诱导和多次循环利用过程中均表现出优异的催化持久性和重复使用性。
Fig.1 Synthetic diagram of 3D p-CNG-M (Au, Pd, Pt) composite catalysts.
研究意义:
本研究为增强贵金属修饰光催化剂的结构稳定性并提高其催化产氢性能提供了一种有效策略。
部分表征及性能数据如下图所示:
Fig.2 TEM, HRTEM, HAADF, EDX mapping and SAED images of 3D p-CNG-M: Au (B(a-d)), Pd
(C(a-d)) and Pt (D(a-d)). The up-inserts of B-D(a) are particle size
distributions of cocatalysts, and the down-inserts are their SEM images. The
inserts of B-D(b) are the partial magnifications of their HRTEM images.
Fig.3 (a-c) XPS high-resolution spectra of fresh and
recovered 3D p-CNG-M (Au, Pd, Pt) composite catalysts, and (d-g) N2 adsorption-desorption isotherms of 3D p-CNG
skeleton and 3D p-CNG-M (Au, Pd, Pt) composite catalysts.
Fig.4 (a) HER kinetic curves, (b) average HER rates, (f) durability and (g) recycling
performances of optimal 3D p-CNG-M (Au, Pd, Pt) composite catalysts. (c-e)
Investigation of catalyst dosage to the HER performance of optimal 3D p-CNG-M
(Au, Pd, Pt) composite catalysts. (h) HER performances of optimal 3D p-CNG-M
(Au, Pd, Pt) composite catalysts in different pH values.
Fig.5 (a) UV-vis absorption spectra, (c) PL spectra, (d) TRPL spectra, (e) EIS curves
(in dark and under photoinduction (L)), (f) LSV polarization curves (with
interrupted photoinduction) and (g) Tafel polarization curves of 3D p-CNG
skeleton and optimal 3D p-CNG-M (Pt, Pd, Au) composite catalysts. (b)
Magnification of UV-vis absorption spectra of optimal 3D p-CNG (Au, Pd, Pt) composite catalysts during 450~650 nm.
Fig.6 (a) Mott-Schottky plots of 3D p-CNG skeleton and optimal 3D p-CNG-M (Au, Pd,
Pt) composite catalysts. (b) VBM-XPS spectrum and (c) (ahν)n/2-hν pattern of 2D g-C3N4 NSs. (d) Band structures and electron transfer mechanisms of optimal 3D p-CNG-M
(Au, Pd, Pt) composite catalysts.
参考文献:
[1]
W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Angew. Chemie. Int.
Ed. 59 (2019) 136–152.
[2] W. Niu, Y.
Yang, ACS Energy Lett. 3 (2018) 2796–2815.
[3] Z. Zhou, Z.
Pei, L. Wei, S. Zhao, X. Jian, Y. Chen, Energy
Environ. Sci. 13 (2020) 3185–3206.
[4] P. Kuang, M.
Sayed, J. Fan, B. Cheng, J. Yu, Adv.
Energy Mater. 10 (2020)
1903802.
[5] L. Shi, X. Ren,
Q. Wang, Y. Li, F. Ichihara, H. Zhang, Y. Izumi, L. Ren, W. Zhou, Y. Yang, J.
Ye, Small 16 (2020) 2002356.
作者简介:
褚晓姗,女,1996年生,陕西渭南人,陕西科技大学2019级研究生。主要从事贵金属修饰催化剂及产氢相关研究,已知名期刊《Environmental Science: Nano》和《Applied Catalysis B: Environmental》发表SCI论文2篇。荣获2020年度研究生国家奖学金1项,二等学业奖学金1项。