The Crack Propagation Behaviour of CO2 Fracturing Fluid in Unconventional Low Permeability Reservoirs: Factor Analysis and Mechanism Revelation
writer:Li, Qiang.; Li, Qingchao.; Cao, Hongqi.; Wu, Jingjuan; Wang, Fuling.; Wang, Yanling
keywords:unconventional shale reservoirs; CO2 fracturing fluid; reservoir fracture propagation; enhanced oil recovery
source:期刊
specific source:Processes, 13(1), 159.
Issue time:2025年
To circumvent the numerous deficiencies inherent to water-based fracturing fluids and the associated greenhouse effect, CO2 fracturing fluids are employed as a novel reservoir working fluid for reservoir reconstruction in unconventional oil fields. Herein, a mathematical model of CO2 fracturing crack propagation based on seepage–stress–damage coupling was constructed for analysing the effects of different drilling fluid components and reservoir parameters on the crack propagation behaviour of low permeability reservoirs. Additionally, the fracture expansion mechanism of CO2 fracturing fluid on low permeability reservoirs was elucidated through mechanical and chemical analysis. The findings demonstrated that CO2 fracturing fluid can effectively facilitate the expansion of cracks in low-permeability reservoirs, and thickener content, reservoir pressure, and reservoir parameters were identified as influencing factors in the expansion of reservoir cracks and the evolution of rock damage. The 5% CO2 thickener can increase the apparent viscosity and fracture length of CO2 fracturing fluid to 5.12 mPa·s and 58 m, respectively, which are significantly higher than the fluid viscosity (0.04 mPa·s) and expansion capacity (13 m) of pure CO2 fracturing fluid. Furthermore, various other factors significantly influence the fracture expansion capacity of CO2 fracturing fluid, thereby offering technical support for fracture propagation in low-permeability reservoirs and enhancing oil recovery.