相关链接
联系方式
  • 通信地址:重庆市北碚区天生路2号
  • 邮编:400710
  • 电话:023-68251228
  • 传真:
  • Email:lufei2111217@iccas.ac.cn
当前位置:> 首页 > 论文著作 > 正文
Microcluster colloidosomes for hemostat delivery into complex wounds: A platform inspired by the attack action of torpedoes
作者:Lu, Bitao; Hu, Enling; Xie, Ruiqi; Yu, Kun; Lu, Fei et al.
关键字:Torpedoes-inspired, Microcluster colloidosomes
论文来源:期刊
具体来源:Bioactive Materials
发表时间:2022年
Complex yet lethal wounds with uncontrollable bleeding hinder conventional hemostats from clotting blood at the source or deep sites of injury vasculature, thereby causing massive blood loss and significantly increased mortality. Inspired by the attack action of torpedoes, we synthesized microcluster (MC) colloidosomes equipped with magnetic-mediated navigation and "blast" systems to deliver hemostats into the cavity of vase-type wounds. CaCO3/Fe2O3 (CF) microparticles functionalized with Arg-Gly-Asp (RGD) modified polyelectrolyte multilayers were co-assembled with oppositely charged zwitterionic carbon dots (CDs) to form MC colloidosomes, which were loaded with thrombin and protonated tranexamic acid (TXA-NH3+). The composite microparticles moved against blood flow under magnetic mediation and simultaneously disassembled for the burst release of thrombin stimulated by TXA-NH3+. The CO2 bubbles generated during disassembly produced a "blast" that propelled thrombin into the wound cavity. Severe bleeding in a vase-type hemorrhage model in the rabbit liver was rapidly controlled within similar to 60 s. Furthermore, in vivo subcutaneous muscle and liver implantation models demonstrated excellent biodegradability of MC colloidosomes. This study is the first to propose a novel strategy based on the principle of torpedoes for transporting hemostats into vase-type wounds to achieve rapid hemostasis, creating a new paradigm for combating trauma treatment.