相关链接
联系方式
  • 通信地址:重庆市北碚区天生路2号
  • 邮编:400710
  • 电话:023-68251228
  • 传真:
  • Email:lufei2111217@iccas.ac.cn
当前位置:> 首页 > 论文著作 > 正文
Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds
作者:Qiu, Haoyu; Lan, Guangqian; Ding, Weiwei; Wang, Xinyu; Wang, Wenyi; Shou, Dahua; Lu, Fei et al.
关键字:SPONGE
论文来源:期刊
具体来源:Research
发表时间:2022年
Achieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites. In this study, a Janus particle, SEC-Fe@CaT with dual-driven forces, bubble-driving, and magnetic field- (MF-) mediated driving, was prepared via in situ loading of Fe3O4 on a sunflower sporopollenin exine capsule (SEC), and followed by growth of flower-shaped CaCO3 clusters. The bubble-driving forces enabled SEC-Fe@CaT to self-diffuse in the blood to eliminate agglomeration, and the MF-mediated driving force facilitated the SEC-Fe@CaT countercurrent against blood to access deep bleeding sites in the wounds. During the movement in blood flow, the meteor hammer-like SEC from SEC-Fe@CaT can puncture red blood cells (RBCs) to release procoagulants, thus promoting activation of platelet and rapid hemostasis. Animal tests suggested that SEC-Fe@CaT stopped bleeding in as short as 30 and 45 s in femoral artery and liver hemorrhage models, respectively. In contrast, the similar commercial product Celoxr (TM) required approximately 70 s to stop the bleeding in both bleeding modes. This study demonstrates a new hemostat platform for rapid hemostasis in deep and complex wounds. It was the first attempt integrating geometric structure of sunflower pollen with dual-driven movement in hemostasis.