首页
最新动态 交流合作 科研项目 论文著作 精彩瞬间 招生招聘
  • 243. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.
  • 来源:刘天西教授个人网站 2016-06-27
  • The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogendoped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g-1 at a discharge current density of 1 A g-1, based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g-1 and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg-1 at the power density of 800.2 W kg-1. Therefore, this work presents a novel protocol for the large-scale production of biomass-derived highperformance electrode materials in practical supercapacitor applications.
  • [来源:中国聚合物网]
  • 了解更多请进入: 刘天西教授个人网站
相关新闻
  • · 245. In Situ Growth of Fe2O3 Nanoparticles on Highly Porous Graphene/Polyimide-Based Carbon Aerogel Nanocomposites for Effectively Selective Detection of Dopamine.
  • · 244. A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications.
  • · 242. Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution.
  • · 241. Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO2 nanotube heterostructures.

关于我们  |  联系我们  

网站:中国聚合物网

polymer.cn Copyright ©2017