首页
最新动态 交流合作 科研项目 论文著作 精彩瞬间 招生招聘
  • Selective and Controlled Release Responsive Nanoparticles with Adsorption-Pairing Synergy for Anthocyanin Extraction
  • 来源:娄志超副教授个人网站 2024-09-27
  • Jiang, Xizhi; Wang, Min; Lou, Zhichao; Han, He; et al. Selective and Controlled Release Responsive Nanoparticles with Adsorption-Pairing Synergy for Anthocyanin Extraction, ACS Nano, 2024, 18, 3, 2290-2301.(一区,IF=15.8)

    Abstract

    Anthocyanins with different structures have different anti-inflammatory and anti-cancer properties. Precise structural use can improve the chemopreventive effects of anthocyanins

    and enhance treatment outcomes because the anthocyanin structure influences its functional sites and activities. However, owing to the available variety of anthocyanins and their complex

    structures, the low matching of intermolecular forces between existing adsorbents and anthocyanins limits the targeted separation of anthocyanin monomers. Short-range and efficient selective binding, which is difficult to achieve, is the current focus in the extraction

    field. We here developed self-assembled Fe3O4-based nano adsorbers with different surface modifications based on adsorption-pairing synergy. The electrostatic force, coordination bond, hydrogen bond, and π?π* bond together induced selective adsorption between Fe3O4 nanoparticles and anthocyanin molecules. An acid-release solution disrupted the polarity balance in the aforementioned association system, thereby promoting the controlled release of

    anthocyanins. Among the candidates, the effects of morphology, particle size, surface charge, and functional group on adsorption performance were analyzed. The polyacrylamide-modified magnetic Fe3O4 nanoparticles were found to be favorable for selectively extracting anthocyanin, with an adsorption capacity of 19.74 ± 0.07 mg g?1. The release percentage of cyanidin-3-O-glucoside reached up to 98.6% ± 1.4%. This study offers a scientific basis for developing feasible nanotechniques to extract anthocyanins and plant active substances.

  • [来源:中国聚合物网]
  • 了解更多请进入: 娄志超副教授个人网站
相关新闻
  • · Fabrication of a bamboo-based glulam based on reconstitution unit innovation: Mechanical property investigation and carbon footprint evaluation
  • · Introducing Rich Heterojunction Surfaces to Enhance the High-Frequency Electromagnetic Attenuation Response of Flexible Fiber-Based Wearable Absorbers

关于我们  |  联系我们  

网站:中国聚合物网

polymer.cn Copyright ©2017