Light-harvesting is an indispensable process in photosynthesis, and researchers have been exploring various structural scaffolds to create artificial light harvesting systems. However, achieving high donor acceptor ratios for efficient energy transfer remains a challenge as excitons need to travel longer diffusion lengths within the donor matrix to reach the acceptor. Here, we report a polymeric supramolecular column-based light-harvesting platform inspired by the natural light-harvesting of purple photosynthetic bacteria to address this issue. The supramolecular column is designed as a discotic columnar liquid crystalline polymer and acts as the donor, with the acceptor intercalated within it. The modular columnar design enables an ultrahighdonor acceptor ratio of 20000:1 and an antenna effect exceeding 100. Moreover, the spatial confinement within the supramolecular columns facilitates control over the energy transfer process, enabling dynamic full-color tunable emission for information encryption applications with spatiotemporal regulation security.
全文链接:https://www.nature.com/articles/s41467-024-45252-9