Biodegradable poly(butylene succinate) (PBSU)/functional multi-walled carbon nanotubes (f-MWNTs) nanocomposite were prepared by melt compounding. Nonisothermal crystallization and subsequent melting behavior, isothermal crystallization kinetics, spherulitic morphology, and crystal structure of neat PBSU and its nanocomposite were studied by differential scanning calorimetry, optical microscopy and wide angle X-ray diffraction in detail. The presence of f-MWNTs has a significant heterogeneous nucleation effect on the crystallization and morphology of PBSU, resulting in that the crystallization is enhanced during both nonisothermal and isothermal crystallization in the nanocomposite. Moreover, the crystal structure of PBSU is not modified by f-MWNTs in the nanocomposite. The thermogravimetric analysis illustrates an improvement in thermal stability of PBSU by around 10 °C in the presence of f-MWNTs compared with that of neat PBSU. © 2009 Elsevier Ltd. All rights reserved.