JMST特邀高被引综述文章“面向极端高温环境应用的微/纳米多尺度强韧化复合材料及其涂层研究进展”及其新近相关工作概览
https://mp.weixin.qq.com/s/cC-xLvDYP9Kl2JaDFf-gmw
https://doi.org/10.1016/j.jmst.2021.03.076
https://linkinghub.elsevier.com/retrieve/pii/S1005030221004527
https://doi.org/10.1016/j.jmst.2021.03.076
西北工大付前刚教授:多主元高熵超高温陶瓷改性热防护涂层2022-12-29 19:23:19 来源: 材料学网
https://www.163.com/dy/article/HPPE40A70536M4GO.html
西北工业大学陶瓷顶刊:原位硼/碳热还原法结合气相反应熔渗法制备极端环境用碳基复合材料多主元高熵超高温陶瓷改性热防护涂层
https://www.sciencedirect.com/science/article/pii/S0272884222001407?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0272884222020144
2022年1月,西北工业大学(Northwestern Polytechnical University,昵称“西瓜大”,简称“西工大”,是中华人民共和国工业和信息化部直属,我国唯一一所以同时发展航空、航天、航海(简称“三航”)工程教育和科学研究为特色的全国重点大学)李贺军院士(https://mp.weixin.qq.com/s/Sh9swmi3c58x7lqe_OIttg)、国家杰青付前刚教授(https://mp.weixin.qq.com/s/plB42-khi1SNBS_uxlDGPQ)等领衔的陕西省纤维增强轻质复合材料重点实验室(Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials)在材料领域著名顶级期刊《Journal of Materials Science & Technology》(简称《JMST》)发表了主题为“面向极端高温环境应用的微/纳米多尺度强韧化C/C复合材料(炭炭复合材料-隐藏的实力https://mp.weixin.qq.com/s/UglDya1J9-5eNqTIwsDEjw)及其涂层研究进展”的特邀综述文章(2022年96期,31-68页),并被遴选为封面文章(https://mp.weixin.qq.com/s/m1_FfV8KorBP_MiY-N23Ag)。
参考文献:Fu Qiangang 1*, Zhang Pei 1, Zhuang Lei, Zhou Lei, Zhang Jiaping, Wang Jie, Hou Xianghui, Riedel Ralf, Li Hejun *, Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: take carbon/carbon composites and their coatings as the examples, Journal of Materials Science & Technology, 2022, 96: 31-68. 10.1016/j.jmst.2021.03.076
本综述系统地评述了微/纳多尺度强韧化极端苛刻环境用耐高温氧化/抗烧蚀复合材料相关重要新进展,同时对其强韧化机理和效果着重进行了论述。所述微/纳多尺度强韧化材料包括纳米颗粒(简写为NPs),碳纳米管/碳纳米纤维(简写为CNT/CNFs),纳米线(简写为NWs),晶须,石墨烯,陶瓷纤维和混杂多尺度微/纳结构等。综述包含综合表格13个,大图39幅,参考文献243条,基于本科研团队十多年的研究工作及相关课题组、研究单位的成果综述而成,总计逾两万字。相关研究工作得到了国家重点研发计划、凝固技术国家重点实验室基金、111创新引智基地项目、陕西省创新人才推进计划基金、超高温结构复合材料重点实验室基金、GF基金、国家自然基金委和陕西省教育厅科研计划项目等的经费支持。
与该综述文章相关专题、主题涉及以下多个方面:微(石墨烯、晶须、短纤维)纳(纳米颗粒、纳米线、纳米管)多尺度材料,超高温陶瓷、强韧化,轻质高强复合材料,复合涂层,腐蚀、烧蚀与氧化,抗热震,氧化防护能力,核壳网络结构,原位生长,C/C复合材料,纳米陶瓷,机械性能,碳纳米管等等。文章发表后引起相关领域关注,感谢相关研究学者的持续关注。目前本文Scopus、web of science - Clarivate、Researchgate引用超过70条。
发文前该综述已被国内外多位专家、学者在Composites Science and Technology、Advanced Functional Materials、Corrosion Science、无机材料学报Journal Of Inorganic Materials、Advances in Materials Science and Engineering、Reviews on Advanced Materials Science、Carbon、Applied Physics Letters、Science China Materials、Engineering Failure Analysis、ACS Nano、JMST、Materials Characterization、Metals、Ceramics International、Materials、Journal of the European Ceramic Society、Surface and Coatings Technology、Journal of Materiomics、Journal of the American Ceramic Society、Synthesis and Sintering、Materials Science and Engineering: A、Composites Part A: Applied Science and Manufacturing、Composites Part B: Engineering、Composites Structures等数十种期刊发表的53篇文章(包括预印本Rreprint)引用。部分关键施引文献(其中53篇已经在文章“JMST综述“面向极端高温环境应用的微/纳米多尺度强韧化复合材料及其涂层研究进展”及其新近相关工作概览”(下图所示https://mp.weixin.qq.com/s/cC-xLvDYP9Kl2JaDFf-gmw)中介绍)如下(附有图片摘要Graphical abstract等信息),于此将其他新近引用本综述的70余篇文献的关键信息分享,以飨读者,共同学习、促进相关工程科学领域的认识(所列文章均已经在线正式发表,网络上可检索,如有侵权或交流请联系作者,QQ781520976,谢谢关注):
1. Huang J, Guo L. SiC coating with high crack resistance property for carbon/carbon composites[J]. Ceramics International, 2022, 48(2): 1740-1744. https://doi.org/10.1016/j.ceramint.2021.09.253
2. Zhu X, Zhang Y, Zhang J, et al. A compound glass coating with micro-pores to protect SiC-coated C/C composites against oxidation at 1773 K and 1973 K[J]. Corrosion Science, 2022, 195: 109983. ( IF 7.205 ) Pub Date : 2021-11-26 , https://doi.org/10.1016/j.corsci.2021.109983
3. Zhang Y, Sun J, Guo L, et al. Ablation resistant ZrC coating modified by polymer-derived SiC/TiC nanocomposites for ultra-high temperature application[J]. Journal of the European Ceramic Society, 2022, 42(1): 18-29. https://doi.org/10.1016/j.jeurceramsoc.2021.09.057
4. Zhang P, Fu Q, Liu B, et al. Development of SiC-ZrC-based ultra-high temperature ceramic coatings via composite method of polymer precursor pyrolysis plus gaseous reactive infiltration[J]. Surface and Coatings Technology, 2022, 431: 127996. https://doi.org/10.1016/j.surfcoat.2021.127996
5. Han L, Xiao C, Song Q, et al. Nano-interface effect of graphene on carbon nanotube reinforced carbon/carbon composites[J]. Carbon, 2022. ( IF 9.594 ) Pub Date : 2022-01-07 , https://doi.org/10.1016/j.carbon.2022.01.010
6. Li B, Li H J, Yao X Y, et al. Ablation behavior of (ZrC/SiC)3 alternate coating prepared on sharp leading edge C/C composites by CVD[J]. Journal of Materials Science & Technology, 2022. ( IF 8.067 ) Pub Date : 2022-01-29 , https://doi.org/10.1016/j.jmst.2021.10.049
7. Lu D, Wang H, Su L, et al. Ultrastrong, elastic, and fatigue‐resistant SiC nanowires network[J]. Journal of the American Ceramic Society, 2021. ( IF 3.784 ) Pub Date : 2021-12-07 , https://doi.org/10.1111/jace.18263
8. Zhang P, Cheng C, Liu B, et al. Multicomponent (Hf0. 25Zr0. 25Ti0. 25Cr0. 25) B2 ceramic modified SiC–Si composite coatings: In-situ synthesis and high-temperature oxidation behavior[J]. Ceramics International, 2022, 48(9): 12608-12624. https://doi.org/10.1016/j.ceramint.2022.01.129
9. Wang P, Xu Z, Liu X, et al. Regulating the interfacial reaction of Sc2W3O12/AgCuTi composite filler by introducing a carbon barrier layer[J]. Carbon, 2022, Volume 191, May 2022, Pages 290-300. ( IF 9.594 ) Pub Date : 2022-02-05 , https://doi.org/10.1016/j.carbon.2022.01.065
10. Feng G, Li H, Yao X, et al. Investigation on the relationship between multilayer architecture and ablation behavior using an oxyacetylene torch[J]. Corrosion Science, 2022: 110104. ( IF 7.205 ) Pub Date : 2022-01-15 , https://doi.org/10.1016/j.corsci.2022.110104
11. Zamharir M J, Zakeri M, Razavi M. Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering[J]. Synthesis and Sintering, 2021, 1(4): 202-210. https://doi.org/https://doi.org/10.53063/synsint.2021.1452
12. Wang C, Fu Q, Zhou L. Improved mechanical strength of the C/C-Mo joint by introducing polydopamine modified Ni foam to the interlayer[J]. Materials Science and Engineering: A, 2022: 142631. ( IF 5.234 ) Pub Date : 2022-01-08 , https://doi.org/10.1016/j.msea.2022.142631
13. Tong M, Chen C, Fu Q, et al. Exploring Hf-Ta-O precipitation upon ablation of Hf-Ta-Si-C coating on C/C composites[J]. Journal of the European Ceramic Society, 2022. ( IF 5.302 ) Pub Date : 2022-01-31 , https://doi.org/10.1016/j.jeurceramsoc.2022.01.054
14. Yan N, Fu Q, Wang R, et al. Quasi-static and dynamic compressive behaviors of porous ZrC ceramic reinforced pyrocarbon composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106749. ( IF 7.664 ) Pub Date : 2021-12-02 , https://doi.org/10.1016/j.compositesa.2021.106749
15. Liu N, Guo L, Kou G, et al. Epitaxial Grown Carbon Nanotubes Reinforced Pyrocarbon Matrix in C/C Composites with Improved Mechanical Properties[J]. Materials, 2021, 14(21): 6607. ( IF 3.057 ) Pub Date : 2021-11-02 , https://doi.org/10.3390/ma14216607
16. Li J, An X, Liang J, et al. Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects[J]. Journal of Materials Science & Technology ( IF 8.067 ) Pub Date : 2022-01-21 , https://doi.org/10.1016/j.jmst.2021.10.041
17. Peipei Wang, Yuhang Bai, Xing Zhao, Xuanru Ren,Wanchang Sun. Oxidation protection of CrSi2-HfB2-SiC/SiC coating for graphite in variable-temperature environment. February 2022,Corrosion Science,Volume 199, 1 May 2022, 110165. https://doi.org/10.1016/j.corsci.2022.110165
18. Hu D, Fu Q, Dong Z, et al. Design of ablation resistant Zr-Ta-OC composite coating for service above 2400℃[J]. Corrosion Science, 2022: 110221. https://doi.org/10.1016/j.corsci.2022.110221
19. Liu N, Guo L, Kou G, et al. Carbon nanotube reinforced pyrocarbon matrix composites with high coefficient of thermal expansion for self-adapting ultra-high-temperature ceramic coatings[J]. Ceramics International, 2022. https://doi.org/10.1016/j.ceramint.2022.02.101
20. Xiaofei Zhu, Yulei Zhang, Jian Zhang, Yangyang Su, Ruicong Chen, Pei Zhang. .SiC/HfB2-based ceramic/SiC multilayer coating to protect C/C composites against oxidation at medium and high temperatures for long-life service. Corrosion Science ( IF 7.205 ) Pub Date : 2022-04-06 , https://doi.org/10.1016/j.corsci.2022.110299
21. Jian Li, Penglei Guo, Chenglong Hu, Shengyang Pang, Jian Ma, Rida Zhao, Sufang Tang, Hui-Ming Cheng. Fabrication of Large Aerogel-Like Carbon/Carbon Composites with Excellent Load-Bearing Capacity and Thermal-Insulating Performance at 1800 °C. ACS Nano (IF 15.881) Pub Date : 2022-03-28, https://doi.org/10.1021/acsnano.2c00943
22. Yao Guo, Leilei Zhang, Qiang Song, Ruonan Zhang, Fei Zhao, Wei Li, Hongchao Sheng, Xianghui Hou, Hejun Li. Simultaneously enhancing mechanical and tribological properties of carbon fiber composites by grafting SiC hexagonal nanopyramids for brake disk application. Journal of Materials Science & Technology (IF 8.067) Pub Date : 2022-03-12 ,https://doi.org/10.1016/j.jmst.2021.12.050
23. Dongdong Yang, Shun Dong, Changqing Hong, Xinghong Zhang. Preparation, modification, and coating for carbon-bonded carbon fiber composites: A review.Ceramics International ( IF 4.527 ) Pub Date : 2022-03-11 , https://doi.org/10.1016/j.ceramint.2022.03.055
24. Yin X, Han L, Liu H, et al. Recent progress in 1D nanostructures reinforced carbon/carbon composites[J]. Advanced Functional Materials, 2022, 32(35): 2204965. https://doi.org/10.1002/adfm.202204965 (通讯单位:西北工业大学,第一作者:第一作者:殷学民博士后 通讯作者:航空学院李霓教授、宋强研究员、张雨雷教授)
Graphical Fig. 24. Skeleton diagram of design, fabrication, and properties of 1D nanostructures reinforced C/C composites.
25. Xiao C, Song Q, Shen Q, et al. Understanding on interlaminar nano-reinforcement induced mechanical performance improvement of carbon/carbon composites after silicon infiltration[J]. Composites Part B: Engineering, 2022, 239: 109946. https://doi.org/10.1016/j.compositesb.2022.109946 (通讯单位:西北工业大学,第一作者:肖才湘博士,通讯作者:宋强研究院)
Graphical Fig. 25. Schematic illustration of overall fabrication processes. (a) The plain weave carbon fiber clothes were coated with SiC nanowire by electrophoresis deposition technique as a hybrid fabric. (b) The modified carbon fiber clothes were layered up to densify with PyC through (isothermal chemical vapor deposition) ICVI method. (c) The densified SiCNW–C/C composites were coated on SiC by pack cementation.
26. Wang R, Li N, Zhang J, et al. Ablation behavior of sharp leading-edge C/C-ZrC-SiC composites using 3000° C oxyacetylene torch[J]. Corrosion Science, 2022, 206: 110551. https://doi.org/10.1016/j.corsci.2022.110551(通讯单位:西北工业大学,第一作者:王瑞宁硕士,通讯作者:航空学院李霓教授、付前刚教授)
Graphical Fig. 26. Preparation process, microstructure, mechanical property and ablation performance and mechanisms of C/C-ZrC-SiC composites
27. Chen B W, Ni D W, Lu J, et al. Long-term and cyclic ablation behavior of La2O3 modified Cf/ZrB2-SiC composites at 2500℃[J]. Corrosion Science, 2022, 206: 110538. https://doi.org/10.1016/j.corsci.2022.110538 (通讯单位:中科院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,第一作者:陈博文博士,通讯作者:董绍明院士、倪德伟研究员)
Graphical Fig. 27. Phase diagrams of ZrO2-La2O3 (a) and La2O3-SiO2 (b)
28. Zheng L, Luo X, Fang C, et al. Ablation behaviour and mechanism of Mg-modified ZrC-SiC composite in plasma ablation flame[J]. Corrosion Science, 2022, 206: 110523. https://doi.org/10.1016/j.corsci.2022.110523 (通讯单位:中南大学轻质高强结构材料国家级重点实验室,第一作者:Lei Zheng博士,通讯作者:张明瑜教授、黄启忠教授)
Graphical Fig. 28. Schematic diagram showing the preparation of ZS and ZSM composites.
29. Lv J, Zhang Y, Li W, et al. Microstructure evolution of HfB2-SiC/SiC coating for C/C composites during long-term oxidation at 1700° C[J]. Corrosion Science, 2022, 206: 110524. https://doi.org/10.1016/j.corsci.2022.110524 (通讯单位:西北工业大学,第一作者:吕君帅博士,通讯作者:张雨雷教授)
Graphical Fig. 29. (a) Schematic illustration of the microstructure evolution of the HfB2-SiC/SiC coating.
30. Tong M, Ding J, Li N, et al. Effect of SiCnws@ BN core shell upon impact-ablation performance of HfC coating on C/C composites[J]. Corrosion Science, 2022, 209: 110707. https://doi.org/10.1016/j.corsci.2022.110707(通讯单位:西北工业大学,第一作者:同济大学-西北工业大学联合博士后童明德,通讯作者:力学与土木建筑学院冯涛教授、付前刚教授)
Graphical Fig. 30. Schematic diagram of impacted SiCnws@PyC/HfC and SiCnws@BN/HfC coatings during ablation process.
32. Li J, Zhang Y, Lv J, et al. Sealing role of Ti-rich phase in HfC-ZrC-TiC coating for C/C composites during ablation above 2100° C[J]. Corrosion Science, 2022, 205: 110474. https://doi.org/10.1016/j.corsci.2022.110474(通讯单位:西北工业大学,第一作者:李嘉晨博士,通讯作者:张雨雷教授)
Graphical Fig. 31. Schematic of the ablation mechanism of the HfC-ZrC-TiC coating.
33. Deng H, Li J, Zheng J, et al. Improvement in mechanical and ablation properties of carbon/carbon composites with nanofilamentous carbon and CeC2[J]. Corrosion Science, 2022, 207: 110593. https://doi.org/10.1016/j.corsci.2022.110593(通讯单位:安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室、西北工业大学,第一作者:邓海亮教授,通讯作者:邓海亮教授、李克智教授)
Graphical Fig. 32. Schematics showing the ablation in needled fiber (a) and nonwoven cloth (b) zones of the composites produced with CeCl3 addition.
34. Yan N, Zhang J, Liu T, et al. One-step preparation and ablation behavior of ZrC-SiC-Si coating for nose-shaped ZrC/C composites with gradient pore structure by vapor silicon infiltration[J]. Corrosion Science, 2022, 206: 110505. https://doi.org/10.1016/j.corsci.2022.110505(通讯单位:西北工业大学,第一作者:闫宁宁博士,通讯作者:张佳平副教授)
Graphical Fig. 33. Macrographs, surface and back temperature curves and simulation results of the nose-shaped ZrC/CGS-ZrC-SiC-Si composite during ablation for 40?s using oxyacetylene torch. (a) Macrograph during ablation, (b) Macrographs of specimens before and after ablation, (c) Surface temperature versus time curves, (d) Back temperature versus time curves, (e) Actual and simulated temperature curves, (f) Temperature distribution diagram after ablation for 40?s, (g) Temperature distribution diagram after cooling for 3?s, (h) The calculated Von Mises stress field at 43?s (Local region).
35. Sun J, Guo L, Zhang Y, et al. Superior phase stability of high entropy oxide ceramic in a wide temperature range[J]. Journal of the European Ceramic Society, 2022, 42(12): 5053-5064. https://doi.org/10.1016/j.jeurceramsoc.2022.05.007(通讯单位:西北工业大学,第一作者:郭凌翔博士,通讯作者:孙佳副教授)
Graphical Fig. 34. Macroscopic photographs and microscopic morphologies of HEFO powders after acid corrosion: (a) microscopic morphologies of untreated HEFO powders after acid corrosion; (b) local enlargement of Fig. 10a; (c) microscopic morphologies of annealed HEFO powders at 1473?K after acid corrosion; (d) local enlargement of Fig. 10c.
36. Sun J, Wang Y, Zhang Y, et al. Microstructure and mechanical properties of C/C composites modified by single-source precursor derived ceramics[J]. Journal of the European Ceramic Society, 2022, 42(13): 5419-5431. https://doi.org/10.1016/j.jeurceramsoc.2022.06.036(通讯单位:西北工业大学,第一作者:王雨祺博士,通讯作者:孙佳副教授)
Graphical Fig. 35. Failure mechanism model of C/C-PDC-NCs after pyrolysis at 1100?°C and subsequent annealing at 1500?°C: (a) C/C-SiC(N)-NCs; (b) C/C-SiC(N)/TiC-NCs-a; (c) C/C-SiC(N)/TiC-NCs-b. The black dots in (b, c) represent the pre-existing microcracks.
37. Zhu X, Zhang Y, Zhang J, et al. Microstructure evolution and oxidation mechanism of HfB2-SiC coating on SiC-coated C/C composites at 1173 K and 1773 K[J]. Ceramics International, 2022, 48(20): 30807-30816. https://doi.org/10.1016/j.ceramint.2022.07.034(通讯单位:西北工业大学,第一作者:朱肖飞博士,通讯作者:张雨雷教授)
Graphical Fig. 36. XPS patterns of 50 wt% HfB2-SiC coating after oxidation at 1173 K: (a) survey XPS spectra; (b) B 1s spectra; (c) Si 2p spectra.
38. Wang C, Fu Q, Zhou L. Significant increase in mechanical performance of the C/C-Mo joint by controlling the interfacial defects[J]. Materials Characterization, 2022, 193: 112275. https://doi.org/10.1016/j.matchar.2022.112275(通讯单位:西北工业大学,第一作者:王琛博士,通讯作者:付前刚教授)
Graphical Fig. 37. Schematic diagram of sample fabricating (a) and shear strength testing equipments (b).
38. Zhang P, Cheng C, Xu M, et al. High-entropy (Hf0. 25Zr0. 25Ti0. 25Cr0. 25) B2 ceramic incorporated SiC-Si composite coating to protect C/C composites against ablation above 2400 K[J]. Ceramics International, 2022. https://doi.org/10.1016/j.ceramint.2022.06.022(通讯单位:西北工业大学,第一作者:西安航天动力研究所张佩博士、工程师,通讯作者:付前刚教授)
Graphical Fig. 38. Ablation performance and mechnisms of the High-entropy (Hf0. 25Zr0. 25Ti0. 25Cr0. 25) B2 ceramic incorporated SiC-Si composite coating
39. Chen B W, Ni D W, Lu J, et al. Microstructure and mechanical behaviors of 2D-Cf/ZrB2-SiC composites at elevated temperatures[J]. Journal of the European Ceramic Society, 2022, 42(13), 5410-5418. https://doi.org/10.1016/j.jeurceramsoc.2022.05.063(通讯单位:中科院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,第一作者:陈博文博士,通讯作者:董绍明院士、倪德伟研究员)
Graphical Fig. 39. FT-IR spectra of the pyrolyzed PCS (a), XRD patterns of the 2D-Cf/ZrB2-SiC composites after heat treatment at different temperatures (b), TEM and EDS spectra of raw ZrB2 powders (c), and TG-MS-Temperature curves of the 2D-Cf/ZrB2-SiC composites (d).
40. Chen Y, Wang P, Ren X, et al. Oxidation of TaB2-SiC coatings prepared by spark plasma sintering and effect of pre-oxidation treatments[J]. Journal of the European Ceramic Society, 2022. Volume 42, Issue 13, October 2022, Pages 5238-5248. https://doi.org/10.1016/j.jeurceramsoc.2022.06.003 (通讯单位:中国矿业大学材料科学与物理学院、西安科技大学材料科学与工程学院,第一作者:Yuexing Chen博士、王佩佩副教授,通讯作者:任宣儒副教授、Chunmin Yang副教授)
Graphical Fig. 40. (a) XRD patterns of the TaB2-SiC coatings oxidized at 1500?°C, (b) Gibbs free energy of the oxidation reactions R1-R7 at different temperatures.
41. Shi H, Zhang M, Zhou L, et al. Improved oxidation protective ability of SHS powder-synthesized ZrB2-MoSi2-SiC-Si coating on carbon/carbon composites[J]. Surface and Coatings Technology, 2022, 447: 128838. https://doi.org/10.1016/j.surfcoat.2022.128838(通讯单位:西北工业大学,第一作者:石慧伦博士,通讯作者:付前刚教授、任宣儒副教授)
Graphical Fig. 41. Cross-section BSE micrographs and elemental mappings of the coatings after oxidation: (a) SHS coatings; (b) elemental mapping of (a); (c) CP coatings; (d) elemental mapping of (c).
42. Liu H, Li K, Chen H, et al. Facile growth of oriented SiC nanowires arrays on carbon fiber cloth via CVD[J]. Ceramics International, 2022. Available online 10 August 2022. https://doi.org/10.1016/j.ceramint.2022.08.038(通讯单位:西北工业大学,第一作者:刘慧敏博士,通讯作者:李克智教授、殷学民博士后)
Graphical Fig. 42. Growth mechanism schematic diagram of (a) oriented SiCNWs and (b) randomly distributed SiCNWs.
43. Wu B, Wang P, Ren X, et al. Effect of film-forming regulation of the self-formed compound layer on the oxidation inhibition capacity of HfB2-SiC coating[J]. Ceramics International, 2022. Volume 48, Issue 15, 1 August 2022, Pages 22039-22052. https://doi.org/10.1016/j.ceramint.2022.04.194(通讯单位:中国矿业大学材料科学与物理学院、西安科技大学材料科学与工程学院,第一作者:Binbin Wu博士、王佩佩副教授,通讯作者:任宣儒副教授、Xueqin Kang副教授)
Graphical Fig. 43. Structure factor-inerting factor curves of the film-forming samples oxidized at 1700 °C.
44. Teng L, Shi X H, Wang H H, et al. A new method to improve the laser-ablation resistance of Si-SiC coating on C/C composites: Laser cladding[J]. Journal of the European Ceramic Society, 2022, 42(14): 6425-6434. https://doi.org/10.1016/j.jeurceramsoc.2022.07.028(通讯单位:西北工业大学,第一作者:滕柳博士,通讯作者:李贺军院士、史小红教授)
Graphical Fig. 44. Schematic diagram of ablation mechanism of the (a) PC-Si-SiC sample and (b) LC-Si-SiC sample.
45. Zhang Z, Fang C, Weng Y, et al. Effects of graphene addition on the microstructure and anti-ablation properties of C/C–SiC composites prepared by precursor impregnation and pyrolysis[J]. Ceramics International, 2022. https://doi.org/10.1016/j.ceramint.2022.05.182(通讯单位:中南大学化学与化学工程学院、中南大学轻质高强结构材料国防科技重点实验室,第一作者:Ze Zhang博士,通讯作者:黄启忠教授、Huiping Hu教授)
Graphical Fig. 45. Ablation mechanisms of C/C–SiC composites.
46. Zhang T, Zhang F, Yin X, et al. Important explorations of the sliding tribological performances of micro/nano-structural interfaces: Cross-shaped microconcave and the nanoNb2AlC-Sn[J]. Engineering Failure Analysis, 2022, 142: 106738. https://doi.org/10.1016/j.engfailanal.2022.106738(通讯单位:华北电力大学材料科学与工程学院、南阳理工学院机械与汽车工程学院,第一作者:Taiping Zhang博士,通讯作者:Kang Yang教授、Yongxing Hao教授)
Graphical Fig. 46. Typical morphologies at 20 N of scanning planform (a), 3D and 2D profiles (b, c); statistical height parameters of 2D profile of the 0.5CC-NS-W (d).
47. Shi C, Liu S, Gong Q, et al. Deposition mechanisms and characteristics of nano-modified multimodal Cr3C2–NiCr coatings sprayed by HVOF[J]. Reviews on Advanced Materials Science, 2022, 61(1): 526-538. https://doi.org/10.1515/rams-2022-0042(第一作者:Chenxi Shi博士,通讯作者:Ming Hu教授)
Graphical Fig. 47. Schematic of the formation of the multimodal structure coatings: (a) original particle, (b) molten part of the particle, (c) particle deformation, and (d) cross section of the multimodal coatings.
48. Yang K, Xiao N. Micro/Nanosilver Contribution in Modifying the Lubrication Film to Improve Friction and Wear Behaviors of TiAl-10 wt.% Ag Composite[J]. Advances in Materials Science and Engineering, 2022, 2022. https://doi.org/10.1155/2022/3169938(第一作者:Kang Yang博士,通讯作者:Na Xiao教授)
Graphical Fig. 48. Typical schematic diagram (a) of the TASC/Si3N4 tribo-pair; 3D (b) and (c) 2D profiles of the wear scars of a TASC.
49. Zhang, Yuyu and Sun, Jia and Guo, Lingxiang and Zhang, Xuemeng and Cui, Dingcong and Fu, Qiangang, Ablation Behavior of Zrc Coating Modified by SiC/TaC Nanocomposites Under Oxyacetylene Torch. Available at SSRN: https://ssrn.com/abstract=4068601 or http://dx.doi.org/10.2139/ssrn.4068601(通讯单位:西北工业大学材料学院,第一作者:张育育博士,通讯作者:孙佳副教授、Fu Qiangang教授)
Graphical Fig. 49. Schematic diagram of the formation (a) and ablation mechanisms (b) of prepared coatings.
50. 标题:Strong high-entropy diboride ceramics with oxide impurities at 1800°C
作者:Liu Jie, Yang Qingqing, Zou Ji, Wang Weimin, Wang Xin-Gang, Fu Zhengyi
卷号:SCIENCE CHINA Materials (2022)
链接:https://www.sciengine.com/doi/10.1007/s40843-022-2287-7
DOI:10.1007/s40843-022-2287-7
51. Qiuchen Han, Lei Chang, Zhaoqun Sun, Jiaqi Sun, Zengyan Wei,* , Pingping Wang,*, Ziyang Xiu, Huasong Gou, Pengchao Kang,* and Gaohui Wu. Ablation Mechanism of AlSiB-C/C Composites under an Oxy-Acetylene Torch. Metals 2023, 13, 160. https://doi.org/10.3390/met13010160
52. AE Islam, NP Sepelak, KJ Liddy, R Kahler. 500 °C operation of β-Ga 2 O 3 field-effect transistors. Dec 2022APPL PHYS LETT
53. 张硕, 付前刚, 张佩, 费杰, 李伟. C/C多孔体的高温热处理对C/C-SiC复合材料摩擦磨损行为的影响[J]. 无机材料学报, DOI: 10.15541/jim20220555.
54. ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20220555. 链接本文: http://www.jim.org.cn/CN/10.15541/jim20220555
55. Li J, Zhang Y, Zhao Y, et al. A novel (Hf1/3Zr1/3Ti1/3) C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100° C[J]. Composites Part B: Engineering, 2023, 251: 110467.
56. Jin X, Wu C, Wang H, et al. Synergistic reinforcement and multiscaled design of lightweight heat protection and insulation integrated composite with outstanding high-temperature resistance up to 2500° C[J]. Composites Science and Technology, 2022: 109878.
57. Akhare D, Luo T, Wang J X. Physics-integrated Neural Differentiable (PiNDiff) Model for Composites Manufacturing[J]. 2022.
58. Yang K, Xiao N. Micro/Nanosilver Contribution in Modifying the Lubrication Film to Improve Friction and Wear Behaviors of TiAl-10 wt.% Ag Composite[J]. Advances in Materials Science and Engineering, 2022, 2022.
59. Sun J, Ye D, Zou J, et al. A review on additive manufacturing of ceramic matrix composites[J]. Journal of Materials Science & Technology, 2022.
60. Lu D, Wang H, Su L, et al. Ultrastrong, elastic, and fatigue‐resistant SiC nanowires network[J]. Journal of the American Ceramic Society, 2022, 105(4): 2783-2790.
61. Zhong L, Guo L, Liu N, et al. Ablation behavior of the ZrC coating on C/C composite with the construction of thermal dispersal network[J]. Ceramics International, 2022.
62. Weiyan Wang,Qiangang Fu. Recovery in oxidation behavior of damaged SiC ZrB2/SiC coating of carbon/carbon composites. December 2022,Journal of Materiomics. DOI: 10.1016/j.jmat.2022.11.008. https://doi.org/10.1016/j.jmat.2022.11.008
63. Wang R, Wang N, Zhu S, et al. Study on the mechanism of ultra-high temperature ablation of ZrB2–SiC–TaSi2 coatings by low-pressure plasma spraying on the C/C composites[J]. Ceramics International, 2022.
64. Feng G, Yao X, Yu Y, et al. Response mechanism study of alternate ZrC-10vol.% SiC/ZrC-70vol.% SiC coatings with various sublayer thicknesses for cyclic and long-term thermal exposure[J]. Journal of Materials Science & Technology, 2023, 140: 153-162.
65. Chen Y, Zhang L, Nie H, et al. Synchronously constructing networked Si3N4 nanowires and interconnected graphene inside carbon fiber composites for enhancing mechanical, friction and anti-ablation properties[J]. Journal of Materials Science & Technology, 2023, 142: 167-175.
66. Guo L, Wang Y, Liu B, et al. In-situ phase evolution of multi-component boride to high-entropy ceramic upon ultra-high temperature ablation[J]. Journal of the European Ceramic Society, 2022.
67. Xie X, Tang X, Liao J, et al. Oxidation and ablation behaviours of a SiCnw@ SiC–Si coating fabricated for carbon-fibre-reinforced carbon-matrix composites via thermal evaporation and gaseous silicon infiltration[J]. Ceramics International, 2022.
68. Wang C, Fu Q, Zhao F. Mechanical strengthening and recovery of C/C-Mo joints during thermal cycling[J]. Materials Characterization, 2022, 194: 112461.
69. Qian D, Chen Y, Ren X, et al. Effect of La2O3 content on the oxygen barrier ability of the HfB2‐SiC coating at 1973 K[J]. Journal of the American Ceramic Society, 2022.
70. Tong M, Ding J, Li N, et al. Effect of SiCnws@ BN core shell upon impact-ablation performance of HfC coating on C/C composites[J]. Corrosion Science, 2022, 209: 110707.
71. Shi H, Zhang M, Zhou L, et al. Improved oxidation protective ability of SHS powder-synthesized ZrB2-MoSi2-SiC-Si coating on carbon/carbon composites[J]. Surface and Coatings Technology, 2022, 447: 128838.
72. Zhang T, Zhang F, Yin X, et al. Important explorations of the sliding tribological performances of micro/nano-structural interfaces: Cross-shaped microconcave and the nanoNb2AlC-Sn[J]. Engineering Failure Analysis, 2022, 142: 106738.
73. Deng H, Li J, Zheng J, et al. Improvement in mechanical and ablation properties of carbon/carbon composites with nanofilamentous carbon and CeC2[J]. Corrosion Science, 2022, 207: 110593.
74. Suresh R, Rajendran S. Carbon-based adsorbents for remediation of noxious pollutants from water and wastewater[M]//Sustainable Materials for Sensing and Remediation of Noxious Pollutants. Elsevier, 2022: 177-194.
75. He Q, Li H, Yin X, et al. Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition[J]. Ceramics International, 2019, 45(16): 20414-20426.
76. Zheng L, Fang C, Zeng C, et al. Microstructure, mechanical and anti-ablation properties of Mg-modified C/C–ZrC–SiC composites prepared by sol-gel technology[J]. Ceramics International, 2022, 48(23): 34728-34742.
77. Liu H, Li K, Chen H, et al. Facile growth of oriented SiC nanowires arrays on carbon fiber cloth via CVD[J]. Ceramics International, 2022, 48(23): 34543-34549.
附:作者个人主要成果概览:
(1)发表论文:
[1] Pei Zhang, Qiangang Fu*, Chunyu Cheng, Jia Sun, Jiaping Zhang, Min Xu, Xiaofei Zhu. Microstructure evolution of in-situ SiC-HfB2-Si ternary coating and its corrosion behaviors at ultra-high-temperatures. Journal of the European Ceramic Society, 2021, 41(13): 6223-6237. (SCI一区. IF: 5.302,SCI:000683481800002)
[2] Qiangang Fu1*, Pei Zhang1, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel and Hejun Li*, Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples. Journal of Materials Science & Technology, 2021, 96: 31-68. (SCI一区. IF: 8.067,SCI: 000737296500004,封面论文)
[3] Pei Zhang, Qiangang Fu*, Dou Hu, Chunyu Cheng*, Xiaofei Zhu, Oxidation behavior of SiC-HfB2-Si coating on C/C composites prepared by slurry dipping combined with gaseous Si infiltration, Surface & Coatings Technology, 2020, 385: 125335. (SCI一区. IF: 4.158,SCI: 000526980900011)
[4] Pei Zhang, Qiangang Fu*, Chunyu Cheng*, Xiaofei Zhu, Jinguo Huang, Jiaping Zhang, Wei Li, Comparing oxidation behaviors at 1773 K and 1973 K of HfB2-MoSi2/SiC-Si coating prepared by a combination method of pack cementation, slurry painting and in-situ synthesis. Surface & Coatings Technology, 2020, 403: 126418. (SCI一区. IF: 4.158,SCI: 000590180600073)
[5] Pei Zhang, Qiangang Fu*, Bing Liu, Chunyu Cheng*, Wei Xie, Dou Hu, Jiaping Zhang, Weiyan Wang. Development of SiC-ZrC-based ultra-high-temperature ceramic coatings via composite method of polymer precursor pyrolysis plus gaseous reactive infiltration. Surface and Coatings Technology, 2022, 431: 127996. (SCI一区. IF: 4.158,SCI: 000782662800002)
[6] Pei Zhang, Chunyu Cheng*, Bing Liu, Wei Xie, Xiaofei Zhu, Jiaping Zhang, Qiangang Fu*. Multicomponent (Hf0.25Zr0.25Ti0.25Cr0.25)B2 ceramic modified SiC–Si composite coatings: In-situ synthesis and high-temperature oxidation behavior. Ceramics International, 2022, 48(9): 12608-12624. (SCI一区. IF: 4.527,SCI: 000737296500004)
[7] Pei Zhang, Chunyu Cheng, Min Xu, Bing Liu, Xiaofei Zhu, Qiangang Fu*. High-entropy (Hf0.25Zr0.25Ti0.25Cr0.25)B2 ceramic incorporated SiC-Si composite coating to protect C/C composites against ablation above 2400 K. Ceramics International, 2022, In press. https://doi.org/10.1016/j.ceramint.2022.06.022 (SCI一区. IF: 4.527,SCI: -,EI: )
[8] Jinguo Huang, Lingjun Guo*, Min Xu, Pei Zhang. Effect of pack cementation temperatures on component, microstructure and anti-oxidation performance of Al-modified SiC coatings on C/C composites. Ceramics International, 2020, 46(6): 8293-8298. (SCI一区. IF: 4.527,SCI: 000519661800148)
[9] Wei Xie, Qiangang Fu*, Chunyu Cheng*, Pei Zhang, Ningning Yan. Oxidation behavior of medium-entropy (Y1/3Yb1/3Lu1/3)2O3 modified SiC ceramic at 1700℃: Experimental and theoretical study. Journal of the European Ceramic Society, 2021, 41(12): 5825-5834. (SCI一区. IF: 5.302,SCI: 000661247200006)
[10] Weiyan Wang, Qiangang Fu*, Jia Sun*, Pei Zhang, Dou Hu. The mechanical and repair behavior of damaged carbon/carbon composites. Ceramics International, 2022, In press. https://doi.org/10.1016/j.ceramint.2022.04.076 (SCI一区. IF: 4.527,SCI: -,EI: )
[11] Xiaofei Zhu, Yulei Zhang*, Jian Zhang, Tao Li, Wei Xie, Pei Zhang, Honggang Li. A compound glass coating with micro-pores to protect SiC-coated C/C composites against oxidation at 1773 K and 1973 K. Corrosion Science, 2022, 195: 109983. (SCI一区. IF: 7.205,SCI: -,EI: 20214811256105)
[12] Xiaofei Zhu, Yulei Zhang*, Yangyang Su, Yanqin. Fu, Pei Zhang, SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation, Journal of the European Ceramic Society, 2021, 41(1): 114-120. (SCI一区. IF: 5.302,SCI: 000582675600010)
[13] Xiaofei Zhu, Yulei Zhang*, Jian Zhang, Yangyang Su, Ruicong Chen, Pei Zhang. SiC/HfB2-based ceramic/SiC multilayer coating to protect C/C composites against oxidation at medium and high temperatures for long-life service. Corrosion Science, 2022, 201: 110299. (SCI一区. IF: 7.205,SCI: -,EI: 20221511953456)
(2)发明专利:
[14] 付前刚,张佩,李贺军,朱肖飞,周磊,程春玉,魏亚龙,张光朋. 一种具有SiC-HfB2-Si单层复合涂层的碳/碳复合材料的制备方法, 专利申请号:202011341093 .6, 公开 (公告) 号:CN 112409025 A. 国家发明专利.
[15] 付前刚,张佩,李贺军,刘冰,程春玉,孙佳,谢薇,张佳平. 一种成分及微结构可控高熵陶瓷改性涂层的制备及方法, 专利申请号: 202110746078.8, 公开 (公告) 号:CN113321533A. 国家发明专利.
[16] 付前刚, 周磊, 童明德, 徐润洲,张佩. 碳/碳复合材料表面镶嵌SiC-ZrB2-ZrSi2复合抗氧化涂层的制备方法. 专利号:ZL 201410203158.9. 授权日期:2021.02.02. 国家发明专利.
[17] 孙佳,郭凌翔,张育育,刘冰,张佩. 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法, 专利申请号: 202111188781.8, 公开 (公告) 号:CN113683430A, 国家发明专利.
(3)会议报告(海报):
[18] 张佩,付前刚*,李贺军,朱肖飞,周磊,魏亚龙. 浆料涂覆结合气相渗硅复合工艺制备碳/碳复合材料用高温抗氧化SiC-HfB2-Si涂层. 第十一届无机非金属材料专题研讨会暨无机非金属材料优秀青年学者论坛,中国西安;2019年8月23日-25日(海报).
[19] Pei Zhang, Qiangang Fu*, Chunyu Cheng, Xiaofei Zhu, Dou Hu, Jinguo Huang. SiC-HfB2-Si coating prepared by composite technique combining slurry dipping with gaseous Si infiltration to protect carbon/carbon composites against high-temperature oxidation. 第九届高校研究生材料科学与工程论坛,中国武汉;2019年11月8日-10日(口头报告) (优秀报告奖).
[20] 张佩,付前刚*,朱肖飞,黄金果,张佳平. 国内微/纳米相强韧抗氧化碳基复合材料研究现状. 中国复合材料学会空天动力复合材料及应用专业委员会2020年度学术会议,中国六盘水;2020年08月06日-09日(会议论文集,p116-p133).
[21] 张佩,付前刚*,李贺军,张佳平,朱肖飞,周磊,魏亚龙. 浆料涂覆结合气相渗硅复合工艺制备碳/碳复合材料SiC-HfB2-Si抗氧化/烧蚀涂层研究. IFAM 2020新材料国际发展趋势高层论坛,中国西安;2020年10月30日-11月1日 (海报) (优秀海报奖).
[22] Pei Zhang, Qiangang Fu*, Chunyu Cheng, Bing Liu, Wei Xie, Jiangping Zhang, Jia Sun. High-entropy ceramics modified coatings with improved oxidation resistance by reactive infiltration assisted slurry painting method. 12th International Conference on High-Performance Ceramics (CICC-12), Suzhou, China. (海报展讲).
[23] 张佩, 付前刚*, 李贺军*. 面向极端高温环境用微纳多尺度强韧化改性碳/碳复合材料涂层. 2021年首届全国“先进结构工程科学”博士生学术论坛-先进热防护结构及材料技术分论坛, 中国北京(在线会议),军科委先进结构技术专家组、中国力学学会固体力学专业委员会、中国复合材料学会青年工作委员会(主办)、北京理工大学先进结构技术研究员、轻量化多功能复合材料与结构北京市重点试验室(承办); 2021年11月20日-11月21日(口头报告).
(4)奖励与荣誉:
[24] “第九届高校材料科学与工程学科研究生论坛”优秀报告奖,武汉理工大学研究生院、材料学院、材料科学与工程国际化示范学院,2019年10月;
[25] 湖南省“高性能材料设计与制备”研究生创新论坛优秀论文奖,湖南省人民政府学位委员会、湖南省教育厅,中南大学研究生院、材料科学与工程学院,2020年10月;
[26] “IFAM2020新材料国际发展趋势高层论坛”优秀Poster奖,中国工程院化工、冶金与材料工程学部,中国材料研究学会、材料学术联盟、国家新材料产业发展战略咨询委员会,2020年10月;
[27] “第十一届高校材料科学与工程学科研究生论坛”优秀墙报奖,武汉理工大学研究生院、材料学院、材料科学与工程国际化示范学院,2021年11月。
附:(1)作者个人页:
(2)所在团队近年代表性学术专著
综述文章的完整参考文献
(The work of the authors were highlighted in yellow)
[1] Padture NP. Advanced structural ceramics in aerospace propulsion. Nature Mater 2016;15:804-9.
[2] Wen QB, Yu ZJ, Riedel R. The Fate and Role of in situ Formed Carbon in Polymer-Derived Ceramics. Prog Mater Sci 2020;109:100623. https://doi.org/10.1016/j.pmatsci.2019.100623
[3] Chen Y, Hong CQ, Hu CL, Hu P, Li L, Liu JC, et al. Ceramic-based thermal protection materials for aerospace vehicles. Adv Ceram 2017;38:311.
[4] Fahrenholtz W G, Hilmas G. Ultra-high temperature ceramics: Materials for extreme environments[J]. Scripta Mater 2017;129(129):94-99.
[5] Park SJ. Carbon/carbon composites. Springer Series in Materials Science, 2018, 210: 292.
[6] Zhang MY, Li KZ, Shi XH, Li HJ, Ma C, Hu C, Wang L Effects of space extreme temperature cycling on carbon/carbon-(Zr-Si-B-C-O) composites performances. Corros Sci 2019, 147: 212-222.
[7] Zhang J, Luo R, Yang C. A multi-wall carbon nanotube-reinforced high-temperature resistant adhesive for bonding carbon/carbon composites. Carbon 2012;50:4922-5.
[8] Christin F. Design, Fabrication, and Application of Thermostructural Composites (TSC) like C/C, C/SiC, and SiC/SiC Composites. Adv Eng Mater 2002;4:903-12.
[9] Natali M, Kenny JM, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. Prog Mater Sci 2016;84:192-275.
[10] Fu QG, Li HJ, Shi XH, Li KZ, Sun GD. Silicon carbide coating to protect carbon/carbon composites against oxidation. Scripta Mater 2005;52:923-7.
[11] Ren XR, Study on the ultra high temperature ceramic borides modified Si-based coating prepared by in-situ reaction method, PhD Disertation, Northwestern Polytechnical University, Xi’an, 2015.
[12] Yan NN, Shi XH, Li K, Fu QG, Xie W, Zhang HR, Song Q. In-situ homogeneous growth of ZrC nanowires on carbon cloth and their effects on flexural properties of carbon/carbon composites. Compos Part B-Eng 2018, 154:200-8.
[13] Jin X, Fan X, Lu C, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. J Eur Ceram Soc 2018;38(1): 1-28.
[14] Tang SF, Hu CL. Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review. J Mater Sci Technol 2017;33:117-30.
[15] Zhang P, Fu QG, Hu D, Cheng CY, Zhu XF. Oxidation behavior of SiC-HfB2-Si coating on C/C composites prepared by slurry dipping combined with gaseous Si infiltration. Surf Coat Tech 2020;385:125335. https://doi.org/10.1016/j.surfcoat.2020.125335
[16] Tong MD, Fu QG, Yao S, Feng T, Hu D, Zhou L. A novel Hf-Si-O wire drawing phenomenon after ablation of SiCnws/HfC SiC coating on C/C composites. J Materiomics, 2020, 6(2):263-273.
[17]Ivan G, Boris G, Aleksei N. Ways to reduce the negative consequences of the thermal expansion coefficient mismatch of a carbon-carbon composite and a protective silicide coating. J Alloy Compd 2018;767:803-810.
[18] Fu QG, Wang YG. Oxidation Protective Coatings for Ultrahigh Temperature Composites. Ceramic Matrix Composites: Materials, Modeling and Technology. New Jersey: John Wiley & Sons, Inc; 2014;452-64.
[19] Li HJ, Xue H, Fu QG, Zhang YL, Shi XH, Li KZ. Research Status and Prospect of Anti-oxidation Coatings for Carbon/Carbon Composites. J Inorg Mater 2010;25:337-43.
[20] Devi GR, Rao KR. Carbon-Carbon Composites-An Overview. Defence Sci J 2013;43(4):369-83.
[21] Astapov AN, Rabinskiy LN. Investigation of Destruction Mechanisms for Heat-Resistant Coatings in Hypersonic Flows of Air Plasma. Solid State Phenom 2017;269:14-30.
[22] Patel M, Saurabh K, Prasad VV. High temperature C/C-SiC composite by liquid silicon infiltration: a literature review. B Mater Sci 2012;35(1):63-73
[23] Wu X, Radovic LR. Inhibition of catalytic oxidation of carbon/carbon composites by boron-doping. Carbon 2005;43:1768-77.
[24] Xu W, Zhuang G, Zhou S. Development of Oxidation Resistance of Carbon/Carbon Composite at High Temperature. Journal of Salt & Chemical Industry 2015;44(10):14-8.
[25] Zhou F, Cao YB, Liu RJ, Wang YF, Zuo L. Technological Advances in High-temperature Protection of C/C-SiC Composites. Mater Rev 2016;30(15):68-74.
[26] Wei W, Xia JT, Jin LI, Zhao JL, Yun-Zhu LI, Liu FL. Current status of research on oxidation resistance for carbon/carbon composites. Carbon Techniques 2011;30(1):47-51.
[27] Han W, Liu M, Deng CM, Mao J, Zeng DC, Protection. Research Progress of Anti-ablation Coatings for Carbon/Carbon Composites at High Temperature. Corrosion & Protection 2017;38(3):163-68.
[28] Smeacetto F, Salvo M, Ferraris M. Oxidation protective multilayer coatings for carbon-carbon composites. Carbon 2002;40:583-7.
[29] Zhang JP. Oxidation protection of carbon/carbon composites and non- destructive characterization methodology development. Material chemistry. Sorbonne Université, 2019. English. fftel-02176911f. https://hal.archives-ouvertes.fr/tel-02176911
[30] Zhuang L, Fu QG, Zhang JP, Guo YY, Li HJ, Shan YC. Effect of pre-oxidation treatment on the bonding strength and thermal shock resistance of SiC coating for C/C-ZrC-SiC composites. Ceram Inter 2015;41:6956-64.
[31] Cai AZ, Guo LJ, Ma CH, Li HJ. Research advances of high-temperature oxidation resistant ceramic coatings for carbon/carbon composites. Carbon Techniques 2015;34(2):1-5
[32] Chen S, Li W, Li X, et al. One-dimensional SiC nanostructures: Designed growth, properties, and applications. Prog Mater Sci 2019: 138-214.
[33] Yin XW, Cheng LF, Zhang LT, Travitzky N, Greil P. Fibre-reinforced multifunctional SiC matrix composite materials. Inter Mater Rev 2017;62:117-72.
[34] Xiao X, Zou L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev 2020;49:301-31.
[35] Kumar CV, Kandasubramanian B. Advances in Ablative Composites of Carbon Based Materials: A Review. Ind Eng Chem Res 2019;58(51):22663-701.
[36] He QC, Li HJ, Yin XM, Wang CC, Lu JH, Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C-ZrC-SiC composites fabricated by a multistep method of chemical liquid-vapor deposition, Ceram Inter 2019;45(16) 20414-20426, https://doi.org/10.1016/j.ceramint.2019.07.018.
[37] Fu YQ, Zhang YL, Zhang J, Li T, Chen GH. Mechanical properties and ablation resistance of HfC nanowire modified carbon/carbon composites. Ceram Inter 2020. (In press) https://doi.org/10.1016/j.ceramint.2020.03.168
[38] Giannakopoulos AE, Breder K. Synergism of Toughening Mechanisms in Whisker-Reinforced Ceramic-Matrix Composites. J Am Ceram Soc 2010;74:194-202.
[39] Ying P, Peng Z, Ren X, Rong H, Wang C, Fu Z. Effect of SiC nano-whisker addition on TiCN-based cermets prepared by spark plasma sintering. Int J Refract Met Hard Mater 2012;34:36-40.
[40] Zhu YC, Ohtani S, Sato Y, Iwamoto N. The improvement in oxidation resistance of CVD-SiC coated C/C composites by silicon infiltration pretreatment. Carbon 1998;36:929-35.
[41] Zhu Y C, Ohtani S, Sato Y. Influence of boron ion implantation on the oxidation behavior of CVD-SiC coated carbon-carbon composites. Carbon 2000;38:501-7.
[42] Cairo CAA, Gra?a MLA, Silva CRM, Bressiani JC. Functionally gradient ceramic coating for carbon-carbon antioxidation protection. J Eur Ceram Soc 2001;21:325-9.
[43] Kobayashi S, Wakayama S, Aoki T. Oxidation behavior and strength degradation of CVD-SiC coated C/C composites at high temperature in air. Adv Compos Mater 2003;12:13.
[44] HiroshiHatta, KenGoto, Sato T, Tanatsugu N. Applications of carbon-carbon composites to an engine for a future space vehicle. Adv Compos Mater 2003;12:23.
[45] Schulte-Fischedick J, Schmidt J, Tamme R. Oxidation behaviour of C/C-SiC coated with SiC-B4C-SiC-cordierite oxidation protection system. Mater Sci Eng A 2004;386(1-2):428-34.
[46] Zhang YL, Hu ZX, Ren JC, Li HJ, Yang BX, Zhang LL. Influence of preparation temperature on the oxidation resistance and mechanical properties of C/SiC coated C/C composites. Corros Sci 2014;86:337-42.
[47] Hu CL, Pang S, Tang SF. Long-term oxidation behavior of carbon/carbon composites with a SiC/B4C-B2O3-SiO2-Al2O3 coating at low and medium temperatures. Corros Sci 2015;94:452-8.
[48] Nakao W. Ceramic Matrix Composites: SiC Whisker-Reinforced. Wiley Encyclopedia of Composites. John Wiley & Sons, Inc; 2011.
[49] Li HJ, Fu QG, Shi XH, Li KZ, Hu ZB. SiC whisker-toughened SiC oxidation protective coating for carbon/carbon composites. Carbon 2006;44:602-5.
[50] Chu YH, Fu QG, Li HJ, Li KZ. Advancement of High-temperature Oxidation Resistant Ceramic Coatings for Carbon/Carbon Composites. J Mater Eng 2010;24:86-91.
[51] Xu ZJ, Chi WD, Liu H. Oxidation Protective Coating on Carbon/Carbon Composite Prepared by Two-step Processes of Pack Cementation and Sol-gel. Hot Working Technology 2012, 41(20):107-10.
[52] Fu QG, Li HJ, Li KZ, Shi XH, He ZB, Huang M. SiC whisker-toughened MoSi2-SiC-Si coating to protect carbon/carbon composites against oxidation. Carbon 2006;9:1866-9.
[53] Fu QG, Li HJ, Li KZ. Effect of SiC whiskers on the microstructure and oxidation protective ability of SiC-CrSi2 coating for carbon/carbon composites. Mater Sci Eng A 2007;445:386-91.
[54] Fu QG, Li HJ, Shi XH. A SiC whisker-toughened SiC-CrSi2 oxidation protective coating for carbon/carbon composites. Appl Surf Sci 2007;253(8):3757-60.
[55] Wen ZL, Peng X, Li Z. Thermal cycling behavior and oxidation resistance of SiC whisker-toughened-mullite/SiC coated carbon/carbon composites in burner rig tests. Corros Sci 2016;106:179-87
[56] Du B, Hong C, Qiang Q, Zhou S, Chen L, Zhang X. Oxidative protection of a carbon-bonded carbon fiber composite with double-layer coating of MoSi2-SiC whisker and TaSi2-MoSi2-SiC whisker by slurry method. Ceram Inter 2017;43(12):9531-7
[57] Xu B, Hong C, Zhou S, Han J, Zhang X. High-temperature erosion resistance of ZrB2-based ceramic coating for lightweight carbon/carbon composites under simulated atmospheric re-entry conditions by high frequency plasma wind tunnel test. Ceram Inter 2016;42:9511-8.
[58] Wang T, Luo RY. Oxidation protection and mechanism of the HfB2-SiC-Si/SiC coatings modified by in-situ strengthening of SiC whiskers for C/C composites. Ceram Inter 2018;44(11):12370-80.
[59] Du B, Hong C, Zhou S, Chen L, Zhang X. Multi-composition coating for oxidation protection of modified carbon-bonded carbon fiber composites. J Eur Ceram Soc 2016;36:3303-10.
[60] Li K, Zhou X, Zhao Z. Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction. J Solid State Chem 2018;258:383-90.
[61] Niu FX, Wang YX, Ma LR, Fu SL, Abbas I, Qu C, Wang CG. Synthesis and characterization of nano-scale and submicro-scale silicon carbide whiskers on C/C composites. J Alloy Compd 2017;714:270-7.
[62] Li JH, Zhang HB, Xiang X. Preparation and growth mechanism of TaC whiskers in porous carbon/carbon preform. Materials Science & Engineering of Powder Metallurgy 2014;19(1):39-43.
[63] Wang Y, Huang J, Cao L, Wu JP. Preparation and properties of Y2Si2O7 whisker-toughened MoSi2 coatings. Acta Materiae Compositae Sinica 2010;27:58-61.
[64] Zhou L, Huang J, Ouyang H, Cao L, Hao W, Wang X. In-situ mullite whisker to improve the thermal shock resistance of silicate glass coating for SiC coated carbon/carbon composites. J Alloy Compd 2017;712:288-95.
[65] Cao L, Liu J, Huang J, Lei Z, Xiang Y, Shen X. Mullite whisker toughened mullite coating to enhance the thermal shock resistance of SiC pre-coated Carbon/Carbon composites. Ceram Inter 2017;43(18):16512-7.
[66] Wang L, Fu Q, Zhao F. Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers. Intermetallics 2018;94:106-13.
[67] Benchikh N, Garrelie F, Donnet C, Wolski K, Fillit RY, Rogemond F, Subtil JL, Rouzaud JN, Laval JY. Nano-stucrured coatings of metal containing Diamond-Like Carbon films deposited by femtosecond pulsed laser ablation. Surf Coat Tech 2006;200:6272-8.
[68] Jafari H, Ehsani N, Khalifeh-Soltani SA, Jalaly M. Nano-SiC/SiC anti-oxidant coating on the surface of graphite. Appl Surf Sci 2013;264:128-32.
[69] Pourasad J, Ehsani N, Valefi Z, Khalifesoltani SA. Preparation of a nanostructured SiC-ZrO2 coating to improve the oxidation resistance of graphite. Surf Coat Tech 2017;323:58-64.
[70] Li HJ, Zhang YL, Fu QG, Li KZ, Wei J, Hou DS. Oxidation behavior of SiC nanoparticle-SiC oxidation protective coating for carbon/carbon composites at 1773 K. Carbon 2007;45:2704-7.
[71] Zhang YL, Li HJ, Fu QG, Li KZ. High Performance SiC Oxidation Protective Coating with ZrO2 Particle Dispersion for Carbon/Carbon Composites. Adv Eng Mater 2010;10:986-9.
[72] Huang JF, Miao L, Bo W, Cao LY, Xia CK, Wu JP. SiCn/SiC oxidation protective coating for carbon/carbon composites. Carbon 2009;47:1198-201.
[73] Liu M, Huang JF, Wang B. SiCn/SiC Multilayer Oxidation Protective Coatings for C/C Composites Prepared by a Hydrothermal Electrophoretic Deposition Process. J Inorg Mater 2009, ;24(6):1214-8
[74] Wang B, Huang JF, Liu M, Li K, Cao L, Wu JP. Influence of Hydrothermal Temperature on Property of SiCn-MoSi2 Coating for SiC PreCoated C/C Composites Prepared by Hydrothermal Eiectrophoretic Deposition Process. Journal of the Chinese Ceramic Society 2011;39(2):318-24.
[75] Wang SL, Li KZ, Li HJ, Zhang YL. Microstructure and ablation resistance of ZrC nanostructured coating for carbon/carbon composites. Mater Lett 2013;107:99-102.
[76] AN N. Effects of Nano-SiC Powder on the Densification Behavior and Ablation Property of C/C-SiC Composites. Synthetic Materials Aging and Application 2017;46(4);42-6.
[77] Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH. Super-tough carbon-nanotube fibres. Nature 2003;423(6941):703.
[78] Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrixcomposites-a review. Inter Mater Rev 2010;55(1): 41-64
[79] Robertson J. Realistic applications of CNTs. Mater Today 2004;7:46-52.
[80] Coleman JN, Khan U, Blau WJ, Gun’Ko YK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006;44:1624-52
[81] Jiang S, Hou P, Liu C, Cheng HM. High-performance single-wall carbon nanotube transparent conductive films. J Mater Sci Technol 2019;35(11):2447-2462.
[82] Gong QM, Zhi L, Zhou XW, Wu JJ, Wang Y, Linag J. Synthesis and characterization of in situ grown carbon nanofiber/nanotube reinforced carbon/carbon composites. Carbon 2005;43:2426-9.
[83] Chen J, Xiong X, Xiao P. The effect of carbon nanotube growing on carbon fibers on the microstructure of the pyrolytic carbon and the thermal conductivity of carbon/carbon composites. Mater Chem Phys 2009;116:57-61.
[84] Harris PJF. Carbon nanotube composites. Inter Mater Rev 2004;49:31-43.
[85] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog Polym Sci 2010;35:357-401.
[86] Yin XM, Li HJ, Han LY, Yuan RM, Lu JH, NiCo2O4 Nanosheets Sheathed SiC@CNTs Core-Shell Nanowires for High-Performance Flexible Hybrid Supercapacitors, J Colloid Interf Sci, 2020. https://doi.org/10.1016/j.jcis.2020.05.101
[87] Shen QL, Li HJ, Li W, Song Q. Realizing the synergy of carbon nanotubes and matrix microstructure for improved flexural behavior of laminated carbon/carbon composites. J Alloy Compd 2018;738:49-55.
[88] Zheng GB, Mizuki H, Sano H, Uchiyama Y. CNT-PyC-SiC/SiC double-layer oxidation-protection coating on C/C composite. Carbon 2008;46(13):1808-11.
[89] Zheng GB, Sano H, Uchiyama Y. A carbon nanotube-enhanced SiC coating for the oxidation protection of C/C composite materials. Compos Part B-Eng 2011;42(8):2158-62.
[90] Feng L, Li KZ, Si ZS, Li HJ, Song Q, Shan YC, Wen SQ. Microstructure and thermal shock resistance of SiC/CNT-SiC double-layer coating for carbon/carbon composites. Ceram Inter 2014;40(8):13683-9
[91] Fu QG, Zhuang L, Ren QW, Feng L, Li HJ, Guo YA. Carbon nanotube-toughened interlocking buffer layer to improve the adhesion strength and thermal shock resistance of SiC coating for C/C-ZrC-SiC composites. J Materiomics 2015;1:245-52.
[92] Fu QG, Zhuang L, Li HJ, Feng L, Jing JY, Tan BY. Effect of carbon nanotubes on the toughness, bonding strength and thermal shock resistance of SiC coating for C/C-ZrC-SiC composites. J Alloy Comd 2015;645:206-12.
[93] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 2003;15(5): 353-89.
[94] Tian BZ, Zheng XL, Kempa TJ., Fang Y, Yu NF, Yu GH, Huang JL, Lieber CM. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007;449:885-9.
[95] Yan J, Chen ZG, Jiang JY, Tan L, Zeng XC. Free-standing all-nanoparticle thin fibers: a novel nanostructure bridging zero-and one-dimensional nanoscale features. Adv Mater 2009;21(3):314-9.
[96] Wong EW, Sheehan PE, Lieber CM. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 1997;277:1971-5.
[97] YWang, Wu HZ. Microstructure of friction surface developed on carbon fibre reinforced carbon-silicon carbide (Cf/C-SiC). J Eur Ceram Soc 2012;32(12):3509-19.
[98] Zhao FL, Fu QG, Wang L, Liu Y. Construction of SiCnw/MAS nanocomposites to strengthen and toughen C/C-LAS joints. Mat Sci Eng A 2017;703:137-43.
[99] Yang W, Araki H, Kohyama A, Thaveethavorn S, Suzuki H, Noda TJ. Process and Mechanical Properties of in Situ Silicon Carbide-Nanowire-Reinforced Chemical Vapor Infiltrated Silicon Carbide/Silicon Carbide Composite. J Am Ceram Soc 2010;87:1720-5.
[100] Ding J, Deng CJ, Yuan WJ, Zhu HX, Zhang XJ. Novel synthesis and characterization of silicon carbide nanowires on graphite flakes. Ceram Inter 2014;40:4001-7.
[101] Prakash J, Venugopalan R, Tripathi BM, Ghosh SK, Chakravartty JK, Tyagi AK. Chemistry of one dimensional silicon carbide materials: Principle, production, application and future prospects. Prog Solid State Ch 2015;43:98-122.
[102] Chu Y, Li HJ, Fu QG, Qi LH, Xu ZW, Zou X. Toughening by SiC Nanowires in a Dense SiC-Si Ceramic Coating for Oxidation Protection of C/C Composites. J Am Ceram Soc 2012;95:3691-7.
[103] Fu QG, Tan BY, Zhuang L, Jing JY. Significant improvement of mechanical properties of carbon/carbon composites by in situ growth of SiC nanowires. Mat Sci Eng A 2016;672:121-8.
[104] Song Q, Zhuang L, Fu QG. Nanotube/Nanowire-Toughened Carbon/Carbon Composites and Their Coatings. Nanomaterials in Rocket Propulsion Systems: Elsevier; 2019. p. 495-528.
[105] Attolini G, Rossi F, Negri M. Growth of SiCNWs by vapor phase technique using Fe as catalyst. Mater Lett 2014, 124(6):169-72.
[106] Gundiah G, Madhav GV, Govindaraj A, Seikh MM, Rao CNR. Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires. J Mater Chem 2002;12:1606-11.
[107] Ye H, Titchenal N, Gogotsi Y, Ko F. SiC Nanowires Synthesized from Electrospun Nanofiber Templates. Adv Mater 2010;17:1531-5.
[108] Liu Y, Fu QG, Lin HJ, Wang BB, Li L. Synthesis and characterisation of self-assembled SiC nanowires andnanoribbons by using sol-gel carbothermal reduction. Adv Appl Ceram 2018:117(1):23-9
[109] Lin HJ, Li HJ, Shen QL, Shi XH, Tian XF, Guo LJ. Catalyst-free growth of high purity 3C-SiC nanowires film on a graphite paper by sol-gel and ICVI carbothermal reducton. Mater Lett 2018;212:86-9.
[110] Wen SQ, Li KZ, Qiang S, Shan YC, Li YY, Li HJ. Enhancement of the oxidation resistance of C/C composites by depositing SiC nanowires onto carbon fibers by electrophoretic deposition. J Alloy Comd 2015;618:336-42.
[111] Fu QG, Nan XY, Chen X, Wang WL, Li HJ, Li YY, Jia LT. Electrophoretic deposition of SiC nanowires onto carbon/carbon composites to improve the interface bonding of Ti-Ni-Si joint. Mater Design 2015;80:137-43.
[112] Fu QG, Li HJ, Shi XH, Li KZ, Wei J, Hu ZB. Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst. Mater Chem Phys 2006;100:108-11.
[113] Men J, Liu Y, Luo R, Li W, Cheng L, Zhang L. Growth of SiC nanowires by low pressure chemical vapor infiltration using different catalysts. J Eur Ceram Soc 2016;36:3615-25.
[114] Hu P, Dong S, Zhang X, Gui K, Chen G, Hu Z. Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties. Sci Rep-UK 2017;7(1):3011.
[115] Han W, Fan S, Li Q, Liang W, Gu B, Yu D. Continuous synthesis and characterization of silicon carbide nanorods. Chem Phys Lett 1997;265:374-8.
[116] Wu RB, Yang GY, Pan Y, Chen JJ. Synthesis of silicon carbide hexagonal nanoprisms. Appl Phys A 2007;86:271-4.
[117] KHONGWONG, Wasana, YOSHIDA, Katsumi, YANO, Science T. Simple approach to fabricate SiC-SiO2 composite nanowires and their oxidation resistance. Mat Sci Eng B2010;173:117-21.
[118] Senthil K, Yong K, Physics. Enhanced field emission from density-controlled SiC nanowires. Mater Chem Phys 2008;112:88-93.
[119] Liu H, Huang Z, Fang M, Liu YG, Wu XJ. Preparation and growth mechanism of β-SiC nanowires by using a simplified thermal evaporation method. J Cryst Growth 2015;419:20-4.
[120] Huang H, Fox JT, Cannon FS. In situ growth of silicon carbide nanowires fromanthracite surfaces. Ceram Inter 2011;37(3):1063-72.
[121] Prakash J, Dasgupta K, Tripathi BM, Bahadur J, Ghosh SK, Chakravartty JK. A new approach to fabricate SiC nanowire-embedded dense SiC matrix/carbon fiber composite. J Mater Sci 2014;49:6784-92.
[122] Hui M, Farhan S, Han D, Liu G, Zhao W, Zhao GJ. Mechanical, structural and oxidation resistance enhancement of carbon foam by in situ grown SiC nanowires. Ceram Inter 2016;42:4723-33.
[123] Farhan S, Wang R, Li KJ. Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires. Ceram Inter 2016;42:11330-40.
[124] Yang W, Araki H, Thaveethavorn S, Kohyama A, Yu JN, Suzuki H, Noda T. Advanced CVI-SiC/SiC Composite with In-Situ Growth of SiC Nanowires in the Matrix as Additional Reinforcements. Materials Science Forum 2005;475-479:1009-12.
[125] Chu YH, Jing SY, Chen JK. In situ synthesis of homogeneously dispersed SiC nanowires in reaction sintered silicon-based ceramic powders. Ceram Inter 2018;44(6):6681-5.
[126] Latu-Romain L, Ollivier M. Silicon Carbide One-dimensional Nanostructures. John Wiley & Sons; 2015
[127] Wei MZ, Yang B, Zhong XY, Feng Z, Li JY, Zhang YF. Large-scale synthesis and characterization of SiC nanowires by high-frequency induction heating. Appl Surf Sci 2006;252:5143-8.
[128] Li T, Zhang YL, Jia S, Ren JC, Zhang LJ. In situ synthesis of SiC nanowire porous layer on carbon/carbon composites. J Am Ceram Soc 2018;101:1371-80.
[129] Dong Z, Meng J, Zhu H, Yuan G, Cong Y, Zhang J, Westwood A. Synthesis of SiC nanowires via catalyst-free pyrolysis of silicon-containing carbon materials derived from a hybrid precursor. Ceram Inter 2017;43(14):11006-14.
[130] Li JH, Zhang YL, Kong YL, Lin H, Jin CQ, Xi ZJ. Synthesis, characterization and field emission properties of SiC nanowires prepared by chemical vapor reaction. Vacuum 2017;146:87-92.
[131] Zou X, Ji L, Lu X, Zhou ZJ. Facile electrosynthesis of silicon carbide nanowires from silica/carbon precursors in molten salt. Sci Rep-UK 2017;7(1):9978.
[132] Li W, Guo HJ. A novel and green fabrication of 3C-SiC nanowires from coked rice husk-silicon mixture and their photoluminescence property. Mater Lett 2018;215:75-8.
[133] Fu QG, Li HJ, Zhang ZZ, Zeng XR, Li KZ. SiC nanowire-toughened MoSi2-SiC coating to protect carbon/carbon composites against oxidation. Corros Sci 2010;52(5):1879-1882.
[134] Chu YH, Fu QG, Cao CW. SiC nanowire-toughened SiC-MoSi2-CrSi2 oxidation protective coating for carbon/carbon composites. Surf Coat Tech 2010;205(2):413-418.
[135] Chu Y, Fu QG, Li HJ, Li KZ, Zou X, Gu CG. Influence of SiC nanowires on the properties of SiC coating for C/C composites between room temperature and 1500 °C. Corros Sci 2011;53:3048-53.
[136] Chu YH, Fu QG, Li HJ, Shi XH, Li KZ, Xue W, Shang GN. Effect of SiC Nanowires on the Mechanical and Oxidation Protective Ability of SiC Coating for C/C Composites. J Am Ceram Soc 2012;95:739-45.
[137] Qiang XF, Li HJ, Zhang YL, Wang ZZ, Ba ZX, Zhang XB. Mechanical and oxidation protective properties of SiC nanowires-toughened SiC coating prepared in-situ by a CVD process on C/C composites. Surf Coat Tech 2016;307:91-8.
[138] Jing JY, Fu QG, Yuan RM. Nanowire-toughened CVD-SiC coating for C/C composites with surface pre-oxidation. Surf Eng 2018;34(1):47-53.
[139] Zhang YL, Zhang PF, Ren JC, Zhang LL, Zhang JP. SiC nanowire-toughened MoSi2-WSi2-SiC-Si multiphase coating for improved oxidation resistance of C/C composites. Ceram Inter 2016;42:12573-80.
[140] Chu YH, Li HJ, Fu QG, Qi LH,, Wei BB. Oxidation protection of SiC-coated C/C composites by SiC nanowire-toughened CrSi2-SiC-Si coating. Corros Sci 2012;55:394-400.
[141] Qiang XF, Li HJ, Zhang YL, Yao DJ, Guo LJ, Wei J. Fabrication and thermal shock resistance of in situ SiC nanowire-SiC/SiC coating for carbon/carbon composites. Corros Sci 2012;59:343-7.
[142] Zhang LL, Li HJ, Li KZ, Zhang SY, Fu QG, Zhang YL, Lu JH, Li W. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites. Appl Surf Sci 2014;313:85-92.
[143] Qiang XF, Li HJ, Liu YF, Zhang N, Li X, Tian S, Cong Y. Oxidation and erosion resistance of multi-layer SiC nanowires reinforced SiC coating prepared by CVD on C/C composites in static and aerodynamic oxidation environments. Ceram Inter 2018;44:16227-36.
[144] Li L, Li HJ, Li YY, Yin XM, Shen QL, Fu QG. A SiC-ZrB2-ZrC coating toughened by electrophoretically-deposited SiC nanowires to protect C/C composites against thermal shock and oxidation. Appl Surf Sci 2015;349:465-71.
[145] Huang JF, Zhou L, Cao LY, Ouyang HB, Wei H, Li CY, Fei J. Effect of the incorporation of SiC nanowire on mullite/SiC protective coating for carbon/carbon composites. Corros Sci 2016;107:85-95.
[146] Chu YH, Li HJ, Li L, Qi LH. Oxidation protection of C/C composites by ultra long SiC nanowire-reinforced SiC-Si coating. Corros Sci 2014;84:204-8.
[147] Fan J, Chu PK. Silicon carbide nanostructures: fabrication, structure, and properties. Springer; 2014.
[148] Zhang M, Zhao J, Li ZJ, Yu HY, Wang YQ, Meng AL, Li QD. Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: homogeneous synthesis, synergistic growth mechanism, and their luminescence properties. J Solid State Chem 2016;243:247-52.
[149] Chu YH, Li HJ, Wang YJ, Qi LH, Fu QG. Microstructure and mechanical properties of ultrafine bamboo-shaped SiC rod-reinforced HfC ceramic coating. Surf Coat Tech 2013;235:577-81.
[150] Chu YH, Li HJ, Fu QG, Qi LH, Lu L. Bamboo-shaped SiC nanowire-toughened SiC coating for oxidation protection of C/C composites. Corros Sci 2013;70:11-6.
[151] Li HJ, Yang X, Chu YH, Lu L, Fu QG, Qi LH. Oxidation protection of C/C composites with in situ bamboo-shaped SiC nanowire-toughened Si-Cr coating. Corros Sci 2013;74:419-23.
[152] Chu YH, Li HJ, Luo HJ, Li L, Qi LH. Oxidation protection of carbon/carbon composites by a novel SiC nanoribbon-reinforced SiC-Si ceramic coating. Corros Sci. 2015;92:272-9.
[153] Li HJ, Wang YJ, Fu QG, Chu YH. SiC Nanowires Toughed HfC Ablative Coating for C/C Composites. J Mater Sci Technol 2015;31:70-6.
[154] Zhang JP, Fu QG, Qu JL. Enhanced bonding strength and thermal cycling performance of MoSi2-CrSi2-SiC-Si coating for carbon/carbon composites by surface modification via blasting treatment. Ceram Inter. 2016;42:14021-7.
[155] Zhuang L, Fu QG, Liu TY, Tan BY. In-situ PIP-SiC NWs-toughened SiC-CrSi2 -Cr3C2-MoSi2-Mo2C coating for oxidation protection of carbon/carbon composites. J Alloy Compd 2016;675:348-54.
[156] Fu QG, Jing JY, Tan BY, Yuan RM, Zhuang L, Li L. Nanowire-toughened transition layer to improve the oxidation resistance of SiC-MoSi2-ZrB2 coating for C/C composites. Corros Sci 2016;111:259-66.
[157] Chu YH, Li HJ, Fu QG, Qi LH, Lu L, Liu YT. Oxidation protection and behavior of C/C composites with an in situ SiC nanowire-SiC-Si/SiC-Si coating. Corros Sci 2013;70:285-9.
[158] Chu YH, Li HJ, Fu QG, Wang HP, Hou XH, Zou X, Shang GN. Oxidation protection of C/C composites with a multilayer coating of SiC and Si+SiC+SiC nanowires. Carbon 2012;50:1280-8.
[159] Chu YH, Li HJ, Fu QG, Shi XH, Qi LH, Wei BB. Oxidation-protective and mechanical properties of SiC nanowire-toughened Si-Mo-Cr composite coating for C/C composites. Corros Sci 2012;58:315-20.
[160] Cheng CY, Li HJ, Fu QG, Li L, Guo LP, Yin XM, TIan XF. Effects of pyrocarbon on morphology stability of SiC nanowires at high temperatures. J Am Ceram Soc 2018;101:3694-702.
[161] Zhuang L, Fu QG, Yu X. Improved thermal shock resistance of SiCnw/PyC core-shell structure-toughened CVD-SiC coating. J Eur Ceram Soc 2018;38(7):2808-14.
[162] Zhuang L, Fu QG, Li HJ. SiCnw/PyC core-shell networks to improve the bonding strength and oxyacetylene ablation resistance of ZrB2-ZrC coating for C/C-ZrB2-ZrC-SiC composites. Carbon 2017;124:675-84.
[163] Zhuang L, Fu QG, Ma WH, Zhang YY, Yan NN, Song Q, Zhang Q. Oxidation protection of C/C composites: Coating development with thermally stable SiC@PyC nanowires and an interlocking TaB2-SiC structure. Corros Sci 2019;148:307-16.
[164] Sayir A. Carbon fiber reinforced hafnium carbide composite. J Mater Sci 2004;39:5995-6003.
[165] Verdon C, Szwedek O, Allemand A, Jacques S, Petitcorps YL, David P. High temperature oxidation of two- and three-dimensional hafnium carbide and silicon carbide coatings. J Eur Ceram Soc 2014;34:879-87.
[166] Cedillos-Barraza O, Manara D, Boboridis K, Watkins T, Grasso S, Jayaseelan DD. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system. Sci Rep-UK. 2016;6:37962.
[167] Li CY, Li KZ, Ouyang HB, Li HJ. Ablation behavior of HfC modified carbon/carbon composites. Rare Metal Materials and Engineering 2006;35:365.
[168] Sacks MD, Wang CA, Yang Z, Jain A. Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors. J Mater Sci 2004;39:6057-66.
[169] Yoo HI, Kim HS, Hong BG, Sihn IC, Lim KH, Lim BJ. Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a vacuum plasma spray coating method. J Eur Ceram Soc 2016;36:1581-7.
[170] Yin XM, Li HJ, Fu YQ, Yuan RM, Lu JH. Hierarchical core-shell structure of NiCo2O4 nanosheets@HfC nanowires networks for high performance flexible solid-state hybrid supercapacitor. Chem Eng J 2020;392:124820. https://doi.org/10.1016/j.cej.2020.124820
[171] Li JH, Zhang YL, Fu YQ, Fei T, Xi ZZ. A simple and efficient route to synthesize hafnium carbide nanowires by catalytic pyrolysis of a polymer precursor. Ceram Inter 2018;44:13335-40.
[172] Ren JC, Zhang YL, Zhang J, Fu YQ, Tian S. Effects of HfC nanowire amount on the microstructure and ablation resistance of CVD-HfC coating. Ceram Inter. 2018;44:11340-9.
[173] Zhang YL, Ren JC, Tian S, Li HJ, Hu ZX. SiC coating toughened by HfC nanowires to protect C/C composites against oxidation. Appl Surf Sci 2014;311:208-13.
[174] Zhang YL, Ren JC, Tian S, Li HJ, Ren XR, Hu ZX. HfC nanowire-toughened TaSi2-TaC-SiC-Si multiphase coating for C/C composites against oxidation. Corros Sci 2015;90:554-61.
[175] Ren JC, Zhang YL, Hu H, Fei T, Li HJ. Oxidation resistance and mechanical properties of HfC nanowire-toughened ultra-high temperature ceramic coating for SiC-coated C/C composites. Appl Surf Sci 2016;360:970-8.
[176] Ren JC, Zhang YL, Hu H, Zhang PF, Fei T, Zhang L. HfC nanowires to improve the toughness and oxidation resistance of Si-Mo-Cr/SiC coating for C/C composites. Ceram Inter 2016;42:14518-25.
[177] Ren JC, Zhang YL, Zhang PF, Li T, Li J, Yang Y. Ablation resistance of HfC coating reinforced by HfC nanowires in cyclic ablation environment. J Eur Ceram Soc 2017;37:2759-68.
[178] Ren JC, Zhang YL, Zhang PF, Li T, Hu H. UHTC coating reinforced by HfC nanowires against ablation for C/C composites. Surf Coat Tech 2017;311:191-8.
[179] Wu R, Zhou K, Yue CY, Wei J, Pan Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci 2015;72:1-60.
[180] Yeh MK, Tai NH, Lin YJ. Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers. Compos Part A-Appl 2008;39:677-84.
[181] Zhan GD, Kuntz JD, Wan J, Mukherjee AK. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2003;2:38-42.
[182] Eslami Z, Yazdani F, Mirzapour MA. Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes. Compos Part A-Appl 2015;72:22-31.
[183] Lubineau G, Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon 2012;50:2377-95.
[184] Yan C, Liu R, Cao Y, Zhang C, Zhang D. Ablation Behavior and Mechanism of C/ZrC, C/ZrC-SiC and C/SiC Composites Fabricated by Polymer Infiltration and Pyrolysis Process. Corros Sci 2014;86:131-41.
[185] Xue L, Su ZA, Yang X, Huang D, Yin T, Liu C, Hunag Q. Microstructure and ablation behavior of C/C-HfC composites prepared by precursor infiltration and pyrolysis. Corros Sci 2015;94:165-70.
[186] Tan W, Li KZ, Li HJ, Zhang J, Ni C, Cao AZ, et al. Ablation behavior and mechanism of C/C-HfC-SiC composites. Vacuum 2015;116:124-9.
[187] Krnel K, Stadler Z, Kosma? T. Preparation and properties of C/C-SiC nano-composites. J Eur Ceram Soc 2007;27(2-3):1211-6.
[188] Centeno A, Santamaría R, Granda M, Menéndez R, Blanco C. Improvement of thermal conductivity in 2D carbon-carbon composites by doping with TiC nanoparticles. Mater Chem Phys 2010;122:102-7.
[189] Kong CZ, Gao XQ, Guo QG, Song JR, Yang Y. The influence of hot-pressing temperature on the structure and properties of an organic modified nanoclay-reinforced carbon/carbon composite. Carbon 2015;30:451-8.
[190] Zhen Q, Lu F, Song SL. Influence of nano-SiC on the graphitization and oxidation resistance of C/C composites. Chinese Journal of Engineering 2017;39(1):81-7.
[191] Gubernat M, Lis T, Tomala J, Kawala J, Fraczek-Szczypta A, Blazewicz S. Study of the carbonization and graphitization of coal tar pitch modified with SiC nanoparticles. J Nanomater 2017;2017.
[192] Mikociak D, Rudawski A, Blazewicz S. Mechanical and thermal properties of C/C composites modified with SiC nanofiller. Mater Sci Eng A 2018;716.
[193] Srikanth I, Padmavathi N, Suresh K, Ghosal P, Kumar A, Subrahmanyam C. Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos Sci Technoll 2013;80:1-7.
[194] Nisar A, Ariharan S, Venkateswaran T, Sreenivas N, Balani K. Effect of carbon nanotube on processing, microstructural, mechanical and ablation behavior of ZrB2-20SiC based ultra-high temperature ceramic composites. Carbon 2017;111:269-82.
[195] Lu XF, Xiao P, Chen J, Long Y. Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature. Corros Sci 2012;55:20-5.
[196] Li KZ, Song Q, Qiang Q, Ren C. Improving the oxidation resistance of carbon/carbon composites at low temperature by controlling the grafting morphology of carbon nanotubes on carbon fibres. Corros Sci 2012;60:314-7.
[197] Lu XF, Xiao P. Short time oxidation behavior and residual mechanical properties of C/C composites modified by in situ grown carbon nanofibers. Ceram Inter 2014;40:10705-9.
[198] Kou G, Guo LJ, Li ZQ, Peng J, Tian J, Huo CX. Microstructure and flexural properties of C/C-Cu composites strengthened with in-situ grown carbon nanotubes. J Alloy Comd 2017;694:1054-60.
[199] Shen QL, Li HJ, Zhao FL, Qiang S, Fu QG. Electrophoretic deposition of carbon nanotubes for improved ablation resistance of carbon/carbon composites. Corros Sci 2018;132: 204-213.
[200] Shen XT, Li KZ, Li HJ, Fu QG, Li SP, Deng F. The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame. Corros Sci 2011;53:105-12.
[201] Zhao ZG, Li KZ, Li W, Liu Q, Kou G, Zhang YL. Ablation behavior of C/C-ZrC-SiC composites prepared by reactive melt infiltration under oxyacetylene torch at two heat fluxes. Ceram Inter 2018;44:17345-58.
[202] Chen ZK, Xiong X, Li GD, Wang YL. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers. Appl Surf Sci 2009;255:9217-23.
[203] Li HJ, Yao D, Fu QG, Lei L, Zhang YL, Yao XY. Anti-oxidation and ablation properties of carbon/carbon composites infiltrated by hafnium boride. Carbon 2013;52:418-26.
[204] Zeng Y, Xiong X, Li G, Chen Z, Sun W, Wang D. Microstructure and ablation behavior of carbon/carbon composites infiltrated with Zr-Ti. Carbon 2013;54:300-9.
[205] Zeng Y, Xiong X, Li G, Chen Z, Sun W, Wang D. Effect of fiber architecture and density on the ablation behavior of carbon/carbon composites modified by Zr-Ti-C. Carbon. 2013;63:92-100.
[206] Yin J, Zhang HB, Xiong X, Huang BY, Zuo JL. Ablation properties of carbon/carbon composites with tungsten carbide. Appl Surf Sci 2009;255:5036-40.
[207] Liu L, Li HJ, Feng W, Shi XH, Li, KZ, Guo LJ. Ablation in different heat fluxes of C/C composites modified by ZrB2-ZrC and ZrB2-ZrC-SiC particles. Corros Sci 2013;74:159-67.
[208] Chang Y, Sun W, Xiong X, Chen Z, Wang Y, Hao Z. A novel design of Al-Cr alloy surface sealing for ablation resistant C/C-ZrC-SiC composite. J Eur Ceram Soc 2017;37:859-64.
[209] Li CY, Li KZ, Ouyang HB, Huang JF, Li HJ, Zhang YL. Effect of ZrO2 morphology on the ablation resistance of carbon/carbon composites containing ZrC prepared by the carbothermal reduction reaction. Corros Sci 2016;102:405-12.
[210] Kou G, Guo LJ, Li HJ. Effect of copper on the heat erosion mechanism of carbon/carbon composites. J Alloy Comd 2017;723:1132-41.
[211] Liu Y, Fu QG, Zhang JP, Li L, Zhuang L. Erosion resistance of C/C-SiC-ZrB2 composites exposed to oxyacetylene torch. J Eur Ceram Soc 2016;36:3815-21.
[212] Li KZ, Duan T, Zhang JP, Liu NK, Zhang MY. Ablation Mechanism of Carbon/Carbon Composites Modified by HfC-SiC in Two Conditions Under Oxyacetylene Torch. J Mater Sci Technol 2017;33:71-8.
[213] Kannan R, Rangaraj L. Processing and characterization of Cf/ZrB2-SiC-ZrC composites produced at moderate pressure and temperature. Ceram Inter 2017;43:2625-31.
[214] Li J, Sha J, Dai J, Lv Z, Shao J, Wang S, Zhang Z. Fabrication and characterization of carbon-bonded carbon fiber composites with in-situ grown SiC nanowires. Carbon 2017;118:148-55.
[215] Wang WY, Fu QG, Tan BY. Effect of in-situ grown SiC nanowires on the mechanical properties of HfC-ZrB2-SiC modified C/C composites. J Alloy Compd 2017;726:866-74.
[216] Wen S, Li KZ, Qiang S, Shan YC, Li Y, Li HJ, Ma HL. Enhancement of the oxidation resistance of C/C composites by depositing SiC nanowires onto carbon fibers by electrophoretic deposition. J Alloy Compd 2015;618:336-42.
[217] Yang X, Huang QZ, Su Z, Chang X, Xue L, Zhong P. Ablative property and mechanism of C/C-ZrB2-ZrC-SiC composites reinforced by SiC networks under plasma flame. Corros Sci 2016;107:9-20.
[218] Geim AK, Novoselov KS. The rise of graphene. Nat. Mater 2007;6(3):183-191.
[219] Katsnelson MI. Graphene: carbon in two dimensions. Mater Today 2007;10(1-2):20-7.
[220] Geim A K. Graphene: status and prospects. Science 2009, 324(5934):1530-1534.
[221] Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev 2012;41:666-86.
[222] Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A. Graphene reinforced metal and ceramic matrix composites: a review. Inter Mater Rev 2016;62:241-302.
[223] Yang W, Luo RY, Hou ZH. Effect of interface modified by graphene on the mechanical and frictional properties of carbon/graphene/carbon composites. Materials 2016;9(6):492.
[224] Gao B, Zhang RL, He MS, Sun LC, Wang CG, Liu L, Zhao LF, Cui HZ, Cao AP. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos Part A-Appl 2016;90:433-40.
[225] Li YY, Guo LJ, Wang YW, Li HJ, Song Q. A Novel Multiscale Reinforcement by In-Situ Growing Carbon Nanotubes on Graphene Oxide Grafted Carbon Fibers and Its Reinforced Carbon/Carbon Composites with Improved Tensile Properties. J Mater Sci Technol 2016;32:419-24.
[226] Jiang ZX, Li JB, Zhang DW. A method of interfacial modification ofcarbon/carbon composites with graphene/polymer coating, CN102795873A. 2012.
[227] Zhou X, Tang SF, Deng J. Thermal protective and heat-insulated integration material: carbon fibers and high-silica fibers reinforced C-SiC matrix composites. Chinese J Mater Res 2006, 20(2):148-152.
[228] Zuo YZ, Li H, Wang SL. Ablation Behavior of (C-SiC)f/C Composites. J Inorg Mater 2017, 32(11): 1141-1146
[229] Du B, Hong CQ, Zhang XH, Wang AZ, Sun YQ. Ablation behavior of advanced TaSi2-based coating on carbon-bonded carbon fiber composite/ceramic insulation tile in plasma wind tunnel. Ceram Inter 2018;44:3505-10.
[230] Li J, Zhang X, Liao JQ, Tan ZJ. In-situ growth of SiC whiskers and application in anti-oxidation coating of C/C composite materials. Mater Sci Eng Powder Metall 2010;15:277-82.
[231] Qiang XF, Li HJ, Zhang YL, Wang ZZ, Ba ZX, Compounds. Synthesis and toughening effect of SiC nanowires wrapped by carbon nanosheet on C/C composites. J Alloy Compd 2016;676:245-50.
[232] Yang X, Huang QZ, Su ZA, Chai LY, Wang XF, Zhou LP. A double layer nanostructure SiC coating for anti-oxidation protection of carbon/carbon composites prepared by chemical vapor reaction and chemical vapor deposition. Ceram Inter 2013;39:5053-62.
[233] Huo CX, Guo LJ, Li YY, Wang CC, Feng L, Liu NK. Effect of co-deposited SiC nanowires and carbon nanotubes on oxidation resistance for SiC-coated C/C composites. Ceram Inter 2017;43:1722-30.
[234] Du B, Hong CQ, Zhang XH, Wang JZ, Qu Q. Preparation and mechanical behaviors of SiOC-modified carbon-bonded carbon fiber composite with in-situ growth of three-dimensional SiC nanowires. J Eur Ceram Soc 2018;38(5):2272-8.
[235] Wang H, Li HJ, Liu XS, Li N, Song Q. Effects of SiC nanowire decorated with carbon nanosheet on mechanical, heat-dissipation and anti-ablation properties of carbon/carbon composites. Ceram Inter 2019;45:2521-9.
[236] Zeng Y, Wang DN, Xiong X, Zhang X, Withers PJ, Sun W, Smith M, Bai MW, Xiao P. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000?°C. Nature communications. 2017;8:15836.
[237] Xu BS, Hong CQ, Zhou SB, Han JC, Zhang XH. High-temperature erosion resistance of ZrB2-based ceramic coating for lightweight carbon/carbon composites under simulated atmospheric re-entry conditions by high frequency plasma wind tunnel test. Ceram Inter 2016;42:9511-8.
[238] Xu BS, An YM, Wang P, Jin XX, Zhao GD. Microstructure and ablation behavior of double anti-oxidation protection for carbon-bonded carbon fiber composites. Ceram Inter 2017;43:783-90.
[239] Li Q Li J, He GQ, Liu PJ. Erosion of carbon/carbon composites using a low-velocity, high-particle-concentration two-phase jet in a solid rocket motor. Carbon 2014;67:140-5.
[240] Liu Y, Fu QG, Wang BB, Guan YW, Liu Y. Ablation behavior of C/C-SiC-ZrB2 composites in simulated solid rocket motor plumes. J Alloy Compd 2017;727:135-45.