
Time-dependent craze zone growth at a crack tip in polymer solids

Wen-Bo Luoa,*, Ting-Qing Yangb, Xia-Yu Wangc

aInstitute of Fundamental Mechanics and Material Engineering, Xiangtan University, Xiangtan, Hunan 411105, People’s Republic of China
bDepartment of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

cSchool of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People’s Republic of China

Received 15 September 2003; received in revised form 29 February 2004; accepted 5 March 2004

Abstract

By considering the polymer bulk as a linear viscoelastic body and the craze zone at crack tip as a nonlinear damage zone, the control

equation for craze zone growth has been derived. It is shown that for a time-independent craze-zone stress, the craze zone would grow only if

the crack-tip stress intensity factor is changed. If the crack-tip stress intensity factor remains constant during loading, the growth rate of the

craze zone length will be interrelated to the crack-tip stress, the craze zone length and the rate of change of the craze-zone stress. If both the

craze-zone stress and the crack-tip stress intensity factor are time-independent, the craze zone length will be constant during the crack

growth, which is the case of self-similar crack growth. Moreover, a new stress distribution model in craze zone is presented based on the

constructed damage evolution law, and the lengthening and thickening of the craze zone at the crack tip are also formulated. The numerical

calculations from the proposed model agree well with the published experimental data.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymers are replacing metallic materials in many load-

bearing applications. Strength and toughness are two of the

most important mechanical properties of structural

materials, such as polymers. Therefore, strengthening and

toughening of polymers have been the focus of research

attention since 1980s, which are based on the understanding

of the deformation and failure mechanisms. As to glassy

polymers, crazing controls much of the macroscopic

response of the material. When crazing occurs under well-

controlled conditions, as in high impact polystyrene (HIPS)

blends, it provides a mechanism of inelastic deformation

improving the material toughness, because considerable

energy dissipates in the processes of craze initiation, craze

growth and craze fibril breakdown, there is not so much

energy to drive the crack propagation, thus crazing

constrains the crack growth to a certain extent. On the

other hand crazes are usually the precursor of cracks and,

ultimately, gross failure. Despite considerable advances in

the understanding of crazing in polymers, there are many

issues of considerable interest in many important inter-

related processes such as craze initiation, craze tip advance,

craze thickening and craze breakdown that are still

unresolved [1,2]. Among those processes, craze tip advan-

cing and craze thickening are especially crucial since they

are responsible for the major part of energy dissipation

during crazing and thus directly influence the material

toughness. In this paper, by considering the polymer bulk as

a linear viscoelastic body and the craze zone at the crack tip

as a nonlinear damage zone, the control equation for craze

zone growth is derived. Moreover, a new simple craze-stress

distribution is presented based on the constructed damage

evolution law, and the lengthening and thickening of the

craze zone at the crack tip are also formulated. Numerical

calculations from the proposed model agree well with the

published experimental data.

2. Craze zone growth at crack tip

Under certain thermo-mechanical conditions, crazing

may occur on the surfaces, or inside the bulk of polymers. It

may also form at the crack tips. Fig. 1 shows the SEM

micrographs of the surface and inner craze in polypropylene
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(PP) specimens. From which it can be seen that craze

consists of voids and highly orientational fibrils, which

connect each other to form a network structure. The craze

can usually contain voids with volume fraction of 50–80

percent. The fibril diameter and spacing are only a few or

tens of nanometers, which are strongly dependent on the

molecular structure of polymers, environment temperature,

loading rate and stress levels.

The craze grows in two different ways [2]: by craze tip

advance, an expansion of the craze periphery generating

more fibrils, and by craze width growth, a normal separation

of the two craze-interfaces behind the craze tip. The general

mechanism of craze tip advance has been well known to be

the Taylor meniscus instability process; whereas the

mechanism of craze thickening is till open.

2.1. Control equations for craze zone growth at crack tip

Polymers are usually viscoelastic in mechanical beha-

vior. Their deformation and failure processes are time-,

temperature- and rate-dependent. The effects of viscoelas-

ticity on crack growth have been treated by a number of

workers, among them are Williams [3], Knauss [4,5],

Schapery [6], and McCartney [7]. To describe the work of

these authors is clearly beyond the scope of this paper.

Below we will discuss the treatment of Schapery [6] since it

is typical and will be used in this paper.

Schapery’s approach treats the crack growth problem in

viscoelastic media by applying elasticity–viscoelasticity

correspondence principle to the Barenblatt theory for an

elastic body. Schapery’s results pertain to the initiation of

crack growth and continuous steady state growth of a fully

developed crack-tip process zone. Care must be taken when

the boundary conditions are time dependent, in this case an

extended correspondence principle proposed by Graham [8]

can be applied under certain conditions. Following Bare-

nblatt, Schapery considers a failure zone exists at the

crack tip. This may represent stretched bonds as in the

original Barenblatt concept, or any kind of materials,

including crazes we shall investigate below, provided that

the stress distribution in this failure zone is time

independent.

Following Schapery’s approach, in this paper we

investigate the time dependent growth of the craze zone at

a crack tip in linearly viscoelastic media. For our purpose,

we shall consider the failure zone in Schapery’s approach to

be the craze zone. Moreover, the craze zone is treated as a

nonlinear damage zone, and in which it is not required to

have a uniform stress distribution.

Consider an infinite linearly viscoelastic plate with a

crack length 2aðtÞ under a remotely tensile stress s1ðtÞ (see

Fig. 2). The crack lies on the xOz coordinate plane. The

crack center is located at the origin of the coordinate system.

The length of the crack-tip craze zone is lðtÞ and the distance

from the craze tip to the crack center is cðtÞ.

Take the cracked body excluding the crack-tip craze zone

under consideration. In this case, the crack is virtually

extended from the actual crack tip at x ¼ aðtÞ by the craze

zone length lðtÞ: Within this zone, the crack surfaces are

loaded by the cohesive stress scðx; tÞ:

With the small craze zone at crack tip in mind, the virtual

crack tip (actually the craze zone tip) stress intensity factor

KCZ
tip can be superposed from the stress intensity factor KI

induced by the remote stress s1 and the stress intensity

factor K 0
I induced by the cohesive stress scðx; tÞ in the craze

zone.

KI ¼ s1

ffiffiffiffi
pc

p
ð1Þ

K 0
I ¼ 22

ffiffiffiffi
c

p

r ðc

a

scðx; tÞffiffiffiffiffiffiffiffiffi
c2 2 x2

p dx ð2Þ

A local abscissa j; coaxial with the crack and with the

origin at the craze zone tip is introduced, as shown in Fig. 2.

We can easily find the interrelation between j and x by

j ¼ c 2 x: For the case of small craze zone at crack tip,

j=c ! 1; then Eq. (2) can be rewritten as

K 0
I ¼ 2

ffiffiffiffi
2

p

r ðl

0

scðj; tÞffiffi
j

p

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1 2 j=2c

s
dj

< 2

ffiffiffiffi
2

p

r ðl

0

scðj; tÞffiffi
j

p dj ð3Þ

Fig. 1. (a) SEM micrograph of surface craze in PP; (b) SEM micrograph of

inner craze in PP.
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thus

KCZ
tip ¼ KI 2

ffiffiffiffi
2

p

r ðl

0

scðj; tÞffiffi
j

p dj ð4Þ

To eliminate the stress singularity at the virtual crack tip,

KCZ
tip should be equal to zero. So

KI ¼

ffiffiffiffi
2

p

r ðl

0
scðj; tÞ=

ffiffi
j

ph i
dj ð5Þ

This equation gives a relation among the cohesive stress

in the craze zone scðj; tÞ; the craze zone length lðtÞ and

the stress intensity factor KIðtÞ due to remote stress s1:

Differentiating this equation with respect to time, we

obtain the control equation for crack-tip craze zone

growth:

scðl; tÞffi
l

p
dl

dt
¼

ffiffiffiffi
p

2

r
dKI

dt
2

ðl

0

›scðj; tÞ

›t

djffiffi
j

p ð6Þ

It can be seen that for a time-independent craze-zone

stress, the craze zone grows only if the crack-tip stress

intensity factor KI is changed. If KI remains constant

during loading, the growth rate of the craze zone length

will be interrelated to the crack-tip stress scðj ¼ l; tÞ;

the craze zone length and the rate of change of the

craze-zone stress. If both the craze-zone stress and the

crack-tip stress intensity factor are time-independent,

the craze zone length will be constant during crack

growth, which is the case of self-similar crack growth.

For simplicity, we consider the craze zone growth

behavior at a quasi-static crack tip. In this case,

_a ¼ 0; _l – 0:. It can be seen from Eq. (6) that in order to

get the craze zone growth law, the external load and the

distribution of craze-zone stress and its variation with time

must be known. Usually the analytical solution of this

problem is too difficult to be gotten, so some simplification

hypotheses are made.

For the case of constant external load, with the

expression of c ¼ a þ l in mind, we can get the following

equation by substituting Eq. (1) into Eq. (6):

scðl; tÞffi
l

p 2
ps1

2
ffiffiffiffiffiffiffiffiffiffi
2ða þ lÞ

p

� 	
dl

dt
¼ 2

ðl

0

›scðj; tÞ

›t

djffiffi
j

p ð7Þ

Let h ¼ j=l; which normalizes the craze zone length, and

then the above equation can be rewritten as:

scðl; tÞ

l
1 2

p

2
ffiffi
2

p
s1

scðl; tÞ

ffiffiffiffiffiffiffiffi
l

a þ l

s0
@

1
A dl

dt

¼ 2
ð1

0

›scðhl; tÞ

›t

dhffiffi
h

p ð8Þ

For the case of constant crack-tip stress intensity factor,

Eq. (6) can be simplified as:

scðl; tÞffi
l

p
dl

dt
¼ 2

ðl

0

›scðj; tÞ

›t

djffiffi
j

p ð9Þ

By the substitution h ¼ j=l; the above equation can be

transformed into:

scðl; tÞ

l

dl

dt
¼ 2

ð1

0

›scðhl; tÞ

›t

dhffiffi
h

p ð10Þ

It can be seen from Eq. (10) that the craze-zone stress will

decrease with time during the craze zone growth. This

prediction is consistent with the published test data [9]. The

calculations provided by Yang and co-workers [10] also

showed that the average stress in the craze zone decreases

with time.

Comparing Eq. (8) with Eq. (10), it can be found that Eq.

(8) reduces to Eq. (10) if

ps1

2
ffiffi
2

p
scðl; tÞ

ffiffiffiffiffiffiffiffi
l

a þ l

s
! 1;

which is true when l=a ! 1 and since scðl; tÞ is not expected

to be a great deal smaller than the remote stress s1: So, we

Fig. 2. The crack tip model with the craze zone.
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only consider the case of constant stress intensity factor

infra for computational conveniences.

2.2. Stress distribution in craze zone at crack tip

For a sharp crack, in a linearly viscoelastic body, with no

damage or yielding zone at its tips, there exists a singularity

of21/2 for the crack-tip stresses [6]. However, for real cases,

the damage or yielding occurs to form a damage or yielding

zone at the crack tips, which is called craze zone in this paper,

and plays a relaxation role on the crack-tip stresses, so the

crack-tip stresses are bounded. We can imagine that the craze

zone comes into existence at a quasi-static crack tip in

polymers when the crack-tip stress reaches to the craze

initiation stress, sini: The craze fibrils get weaker and weaker

under the craze-zone stresses, their load-bearing capabilities

will decrease progressively. When the fibrils at crack tips

cannot bear load anymore, the crack tip begins to advance. So

during the crack growth, the crack-tip stress scðj ¼ lÞ would

be zero. From the above description, we can get a picture of the

stress distribution in the craze zone and its variation with time

before the initiation of crack growth, as shown in Fig. 3. It can

be seen that during the craze growth, the stress at craze-zone

tip remains a constant value of sini; the craze initiation stress.

The crack-tip stress stip ¼ scðj ¼ l; tÞ; however, decreases

with time till to zero, at this instant the crack tip starts to

advance. Thus we can suppose that the stress distribution in

the craze zone and its variation with time has the form as:

scðj; tÞ ¼ sini þ ½stipðtÞ2 sini�
j

lðtÞ

� �m

ð11Þ

where the crack-tip stress stipðtÞ has the following form:

stipðtÞ ¼ scðl; tÞ ¼ sini 1 2
t

ti

� 	n� �
ð12Þ

in which, ti is the time span from craze initiation to crack tip

advance, which may depend on the material strength and the

external load condition. For brittle polymers, ti can be

considered to be the material’s lifetime. The parameters m

and n in Eqs. (11) and (12) are material constants. They are

positive and less than 1, and they are introduced to describe

the loss of mechanical properties of the material in the craze

zone due to the deformation and the load-bearing time. The

smaller m and n are, the less scðj; tÞ and stipðtÞ would be,

that is, the more the load-bearing capacity of the material in

craze zone would decrease, leading to damage softening. As

to the physical meaning of these two parameters, it is easy to

see form the analysis below that m and n determine the

damage evolution law of the material in crack-tip craze

zone. Substituting Eq. (12) into Eq. (11) yields

scðj; tÞ ¼ sini 1 2
j

lðtÞ

� 	m t

ti

� 	n� �
ð13Þ

Let:

Dðj; tÞ ¼
j

lðtÞ

� 	m t

ti

� 	n

ð14Þ

then scðj; tÞ ¼ ½1 2 Dðj; tÞ�sini: It is shown that Dðj; tÞ can

be considered as a damage variable to describe the crazing

damage. Eq. (14) is the damage evolution law. From which

it is seen again that the smaller m and n are, the greater the

damage would be.

From Eqs. (13) and (14), the crazing damage evolution

and the stress distribution and its variation with time can be

obtained for the given material constants. Obviously, m and

n have various values for different materials. Figs. 4 and 5

show the examples for m ¼ 0:55 and n ¼ 0:2; which

indicate the case of PMMA [11].

2.3. Craze zone lengthening and thickening at crack tip

Craze zone grows in two ways: craze tip advance along

the crack extension direction; and craze zone thickening.

For the case of constant stress intensity factor, substituting

Eq. (13) into Eq. (5), we can get the control equation for the

craze zone lengthening:

lðtÞ ¼
p

8

KI

sini

� 	2

1 2
1

2m þ 1

t

ti

� 	n� �22

ð15Þ

Fig. 3. Craze stress model of the craze zone at a crack tip. Fig. 4. Distribution and evolution of the crazing damage.
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It can be seen that the length of craze zone increases with

time. At t ¼ 0þ the initial length of the craze zone is

p

8
ðKI=siniÞ

2
;

which is the expected result for a constant stress over the

craze zone as in Dugdale model for small scale yielding.

As to the initiation of crack growth in linearly

viscoelastic medium, Schapery [6] proposed a model to

calculate the viscoelastic opening displacement, 2vðj; tÞ; in

crack-tip failure zone, which is termed as the crack-tip craze

zone in this paper.

2vðj; tÞ ¼ 2
16

3p
HðjÞ

ðt

t1

Cðt 2 tÞ
›

›t

	 j
3
2

ðl

0

›scðz; tÞ

›z

1ffiffi
z

p dz

� �
dt ð16Þ

where

CðtÞ ¼
JðtÞ; plane stress

ð1 2 v2ÞJðtÞ; plane strain

(
;

and JðtÞ denotes the creep compliance of the bulk material, t

is time, t1 is the time span for crack tip to reach the point

with fixed x along the crack extension direction, and t is the

integral variable. Substituting Eq. (13) into Eq. (16) leads to

2vðj; tÞ ¼
16msini

3pðm 2 1=2Þtn
i

ðt

t1

Cðt 2 tÞ
›

›t
j3=2tn

=
ffiffiffiffi
lðtÞ

ph i
dt

ð17Þ

From which, it is seen that m . 0:5 for the constraint of

positive opening displacement. Note that the time integral in

the above equation is only conducted for points with fixed x;

not for points with fixed j: With j ¼ a 2 x þ lðtÞ in mind,

the above equation can be rewritten as

2vðx; l; tÞ ¼
16msini

3pðm 2 1=2Þtn
i

ðt

t1

Cðt 2 tÞ

£

��
3

2
tn

�
a 2 x þ lðtÞ

lðtÞ

	
2

1

2
tn

�
a 2 x þ lðtÞ

lðtÞ

	3=2�
_lðtÞ

þ nlðtÞtn21

�
a 2 x þ lðtÞ

lðtÞ

	3=2�
dt; x [ ½a; c� ð18Þ

As we know, craze consists of holes and highly oriented

fibrils. The craze widening mechanism is still open; though

there are already two possible explanations, i.e. creep

thickening mechanism and surface drawing thickening

mechanism [1]. The two mechanisms are not mutually

exclusive and do coexist for particular conditions such as

environmental crazing. However, in the case of air crazes,

the currently accepted explanation to craze thickening is due

to Kramer and Berger [2] who have suggested that the

fibrillation in craze zone occurs by a local drawing process

of new polymers from an ‘active zone’ near the craze/bulk

interface into the fibrils. Suppose that 2w0ðx; l; tÞ is the

primordial thickness of the crazed zone, that is the thickness

of the layer of bulk which fibrillates to form a craze, and

2wðx; l; tÞ the craze zone thickness (see Fig. 6), then the

craze zone opening displacement 2vðx; l; tÞ can be expressed

by

2vðx; l; tÞ ¼ 2wðx; l; tÞ2 2w0ðx; l; tÞ; x [ ½a; c�; ð19Þ

By introducing the craze extension ratio, which can be

defined as the ratio of the craze zone thickness to its

primordial thickness, i.e. lðx; l; tÞ ¼ 2wðx; l; tÞ=2w0ðx; l; tÞ;

we can easily get Eq. (20) from Eq. (19).

2wðx; l; tÞ ¼
l

l2 1

� 	
2vðx; l; tÞ; x [ ½a; c� ð20Þ

For the point with x ¼ a; i.e. the crack tip, we can obtain the

maximum thickness of the craze zone, d; from Eqs. (18) and

(20). For a stationary crack under a constant stress intensive

factor, the time t1 for craze zone tip to reach the fixed point

with x ¼ a is 0. Namely, the craze zone can be formed at the

crack tip at the moment when the external load is applied to

Fig. 5. Craze stress distribution and variation with time.

Fig. 6. Geometry of the craze zone.
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the cracked body. So

d ¼
16msini

3pðm 2 1=2Þtn
i

l

l2 1

� 	ðt

0
Cðt 2 tÞ

	 tn_lðtÞ þ nlðtÞtn21
h i

dt ð21Þ

At the moment of t ¼ 0þ; the craze zone length can be

expressed by

l0 ¼
p

8

KI

sini

� 	2

;

and the craze zone width at the crack tip d0 ¼ K2
I =Esini;

where E is the transient elastic modulus of the bulk material.

Thus, from Eq. (21) we get

d ¼
16msini

3pðm 2 1=2Þtn
i

l

l2 1

� 	ðt

0þ
Cðt 2 tÞ

	 tn_lðtÞ þ nlðtÞtn21
h i

dtþ d0 ð22Þ

3. Numerical example

In numerical calculations, we take PMMA, a typical

amorphous polymer, as an example. Let KI ¼ 0:6 MPa
ffiffiffi
m

p

(i.e. 19 N/mm3/2), ti ¼ 8 £ 106 s; the craze initiation stress

sini ¼ 70 MPa; m ¼ 0:55 and n ¼ 0:2 [11], the calculated

craze zone lengths are shown in Fig. 7. For calculation of the

craze zone width, let E ¼ 3:5 GPa and l ¼ 2 [12], then we

get d0 ¼ 1:47 £ 1026 m: Suppose the creep compliance of

the bulk material has the form as CðtÞ ¼ C1 þ C2

�
1 2

expð2t=t0Þ
�
; where C1 ¼ 1=E; C2 ¼ 4 £ 1024 MPa21; t0 ¼

1010 s: The calculated maximum widths of the craze zone

from Eq. (22) are shown in Fig. 8 and compared with the

published test data. It can be seen that the numerical results

agree well with the published experimental data by Döll [9].

4. Concluding remarks

The crack-tip crazing damage and its evolution in

polymers are considered in this paper. The control equation

for the growth of crack-tip craze zone in viscoelastic

medium has been derived. It is shown that for a time-

independent craze-zone stress, the craze zone would grow

only if the crack-tip stress intensity factor is changed. If the

crack-tip stress intensity factor remains constant during

loading, the growth rate of the craze zone length will be

interrelated to the crack-tip stress, the craze zone length and

the rate of change of the craze-zone stress. If both the craze-

zone stress and the crack-tip stress intensity factor are time-

independent, the craze zone length will be constant during

crack growth, which is the case of self-similar crack growth.

By considering the polymer bulk as a linear viscoelastic

body and the craze zone at crack tips as a nonlinear damage

zone, a new model for the craze-zone stress distribution and

its variation with time is presented based on the constructed

crazing damage evolution law. Furthermore, the variation of

the length and width of the crack-tip craze zone with time

are obtained. The numerical calculations for PMMA agree

well with the published experimental data.
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